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Simulate what matters: Targeted Simulation

Don’t throw work away: Recycle simulations

Efficient inference

Hyper-efficient follow up

Marginalize over 𝟏𝟎𝟔 modes!
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Likelihood-free Inference

Likelihood-free (simulation-based) inference employs, g, a

non-linear simulator mapping a stochastic latent state z and

a parameter vector 𝜽 to an observation x = g(𝜽, z).

We’re interested in the marginal posterior, 𝑝 𝝑|𝒙 , where 𝝑
are the parameters of interest and 𝜽 = (𝝑, 𝜼). Namely,

The likelihood ratio 𝑟 𝒙, 𝝑 = Τ𝑝(𝒙|𝝑) 𝑝(𝒙) can be learned by

training a classifier to distinguish positive samples drawn

jointly 𝒙, 𝝑 ~𝑝(𝒙, 𝝑) from negative samples drawn

marginally 𝒙, 𝝑 ~𝑝 𝒙 𝑝 𝝑 , i.e. simulation-parameters pairs

vs. simulations paired with an arbitrary parameter vector.

What’s the big idea?

• Likelihood-free inference facilitates posterior estimation

on data where we have access to a simulator. (Old news)

• Nested Ratio Estimation approximates the likelihood-to-

evidence ratio by zeroing in on regions of high likelihood.

• By using a point process, we never reject simulations and

reuse previous ones. This is highly simulator efficient.

• The above allows for extremely efficient estimation of any

marginal posterior of interest: Effective for constraining

parameters within uncertainty bounds. We call it swyft.

The likelihood ratio allows for computation of any posterior.

Our analysis focuses on an observation of interest, 𝒙𝟎. Only parameter values which could have plausibly

generated 𝒙𝟎 will contribute to the marginalization. Nested Ratio Estimation (NRE) finds this region by iteratively

constraining the initial prior, 𝑝(𝜽), based on 1-dim marginal posterior estimates from previous iterations.

At each round, NRE predicts all 1-dim marginals of 𝜽 for the same underlying posterior.

This allows for reuse of data and efficient training in a multi-target regime.

The final constrained prior, 𝑝(𝑅)(𝜽) , along with previously generated and cached

samples, facilitates for hyper-efficient estimation of any higher dimensional marginal

posterior through likelihood-to-evidence ratio estimation.

Simulating 𝒙 can be expensive. We reuse appropriate simulations by framing our

samples as being drawn from an inhomogeneous Poisson point process (iP3)—a

construction yielding a Poissonian distributed number of samples.

An iP3 is defined by its intensity function. We store samples and intensity functions from

previous rounds. When we need more samples than cached. only then do we simulate.

We compare swyft (L) to MulitNest (R). Let 𝑔 𝜽, 𝒛 =

𝜃0, 𝜃0 − 0.6 2 + 𝜃1 − 0.8 2, 𝜃2 + 𝒏, 𝜽 = (0.57,0.8,1.0)

Follow-up analysis (L), on a new

𝜽, only new simulations counted.

By approximating the marginal posteriors swyft is solving

a different problem than likelihood-based methods. Let

𝑔𝑖 𝜽𝑖 , 𝒛 = sin(𝜋𝜃𝑖) + 𝑛𝑖 . The number of modes grows

exponentially with dimension, flummoxing MultiNest at

high dimension. swyft converges with O(1) simulations.

Cost vs. complexity (L) and a subset of marginals (R).
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