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Abstract

Current recurrent and convolutional neural network (RNN; CNN) architectures are
sub-optimal for modeling periodic sequences because of their acyclic topology.
Here, we present cyclic-permutation invariant networks, a new type of CNN for
which the invariance to cyclic-permutations, or phase shifts, is guaranteed by
representing data in phase-space and performing convolutions in polar coordinates,
which we implement by means of “Symmetry Padding.” Across three different
datasets of periodic variable star light-curves (time-series of brightness) [1, 2, 3],
we show that two particular implementations of the cyclic-permutation invariant
network: the iTCN and the iResNet, consistently outperform both non-invariant
versions of the same network, as well as previous state-of-the-art approaches
including Random Forests. This methodology is first presented in [4] and is
applicable to a wide range of science domains where periodic data abounds due to
physical symmetries. �

1 Introduction

Strictly periodic data is common in the physical sciences where periodicity occurs both spatially and
temporally. Neural networks for which invariances arising from periodicity are explicitly considered
either in the input features or the loss function, have been previously applied to particle physics [5]
and atomic physics/chemistry [6]. In this study, we focus on periodic time series arising from variable
stars, which is important to many sub-fields of astronomy, including the study of the cosmic distance
ladder, galactic archaeology, and stellar evolution. Although different variability mechanisms underlie
these objects, their light curves — time series of brightness versus time — are strictly periodic, with
periods spanning from minutes to years. Until recently, random forest (RF) classification of hand-
crafted features of periodic variable star light curves had been the state-of-the-art for variable star
classification ([7]; [8]). Recently, RNNs have seen competitive performance compared to the RF
techniques for periodic variable star classification ([9]; [10]; [11]). Although works including [9] took
advantage of periodicity by period-folding the multi-cycle time series into a single cycle, i.e., from
time space into phase space, none of them took advantage of the fact that classifications should be
invariant to phase shifts, or formally cyclic permutations. Since the initial-phase of the period-folded
light curve is completely determined by the phase at the first measurement, it is extrinsic to the
physical source and thus irrelevant for classification.

In this work, we present cyclic-permutation invariant convolutional networks in which periodic-
ity of the input data is directly embedded in the network architecture. The technique to embed
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Figure 1: Schematic illustration of the effect of polar coordinate convolutions in preserving cyclic-
permutation invariance. The input and output sequences are shown in polar coordinates for iTCN,
and in Cartesian coordinates for TCN. The input sequence is a sine curve with two full oscillations in
both cases. In the upper diagram, 1-D feature maps of the periodic input remains periodic; rotational
symmetry is preserved. These periodic feature maps are also shown in Cartesian coordinates of the
lower plots in red dashed lines for comparison. As demonstrated by the discrepancy, feature maps are
distorted for the first full oscillation in the non-invariant network, which is shown in solid black lines.

cyclic-permutation invariance is generically applicable to all convolutional networks. We describe
specific implementations with 1D residual convolutional networks (ResNets), and with dilated 1-D
convolutions that have recently been shown to achieve state-of-the-art for a variety of sequence
modeling tasks [12]. To facilitate applications of the cyclic-permutation invariant networks, we are
releasing code at https://github.com/kmzzhang/periodicnetwork.

2 Method

We begin by emphasizing that cyclic-permutation invariant networks do not refer to any particular
network architecture, but to any neural network satisfying the following condition. Given input
sequence x ∈ RN, network f : x→ y is invariant to cyclic-permutation if

∀i ∈ [1, N ], f(x1:N ) = f(concat(xi:N , x1:i)) (1)

Under the cyclic-permutation invariant network framework, the multi-cycle periodic time series is first
period-folded into a single cycle by transforming from temporal space (~t, ~m) into phase space (~φ, ~m):
~φ = ~t mod p, where mi is the magnitude measurement at phase φi and p, the period, is determined
with periodogram analysis [13, 14] and used as an auxiliary input. Then, rather than the typical
Cartesian coordinates, convolutions are performed in polar coordinates such that the period-folded
sequence is essentially wrapped in a “closed ring” (Figure 1: Input Sequence) whereby invariance to
phase shifts, or “rotation,” is naturally guaranteed, rendering the initial phase (φ0) irrelevant. Indeed,
since φ0 is completely determined by the phase at the first observation, it is extrinsic to the physical
source and thus should not affect the classification. We also note that such invariance, formally
cyclic-permutation invariance, is forbidden in RNNs because of its acyclic topology. Polar coordinate
convolution is implemented in CNNs by replacing zero-padding of length (kernel size − 1) in
ordinary Cartesian CNNs with “Symmetry Padding,” which pads the input or hidden sequence not
with zeros, but with the sequence itself (Figure 2a).

Based on the above framework, we present two particular implementations of the cyclic-permutation
invariant network: the invariant Temporal Convolutional Network (iTCN) and the invariant Residual
Convolutional Network (iResNet). The iTCN is based on the Temporal Convolutional Network
(TCN; [12]), and is composed of “residual blocks” (Figure 2b) of 1D dilated convolutions (Figure 2a),
where the input to each “residual block’ is concatenated to the output, creating a “gradient highway”
for back-propagation, thus allowing for improved network optimization. Dilated convolutions refer
to convolutions where the convolution kernel is applied over a region larger than the kernel size
by skipping input values with a step of 2n−1 for the n-th layer. This dilation allows the network
to achieve an exponential increase in the receptive field — the extent of input data accessible with
respect to a particular output neuron — with network depth. The receptive field is calculated as
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Figure 2: (a) Simplified illustration of the cyclic-permutation invariant Temporal Convolutional
Network (iTCN). Numbers refer to the ordering of the period-folded sequence. Dilated convolutions
are represented by arrows where the dilation factor is indicated to the right of each layer. Gray arrows
in the final two layers represent operations which are present only in the iTCN not the TCN. The
classification layer consists of two convolutions of kernel size 1. (b) The residual block, which
is the actual hidden layer used in the iTCN. Residual connections are to be replaced with k = 1
convolutions when consecutive layers have different hidden dimensions.

L = (K−1)×
∑D

n=1 2×2n−1 = (K−1)× (2D+1−2), where K is the kernel size, D the number
of layers, 2n−1 the dilation factor for the nth layer, and the additional factor of 2 due to the fact
that each residual block consists of two dilated convolutions. Network depth is required to be large
enough for the receptive field to be larger than the input sequence length, such that each feature vector
in the output layer has complete information over the input sequence. Simultaneous predictions are
then made for every initial phase of the input sequence (Figure 2a: “classification” layer), which are
averaged with a global mean pooling layer as input to the softmax function for classification.
By averaging predictions from all possible initial phases, the invariant network makes more robust
predictions, as compared to non-invariant CNNs and RNNs, which can only predict for one particular
initial phase with one network forward pass.

To visualise the effects of cyclic-permutation invariance on modelling periodic sequences, we compare
output sequences produced by the iTCN and the TCN in Figure 1. We create an iTCN and a TCN
with the same weights and the same receptive field of 30 at a network depth of 4 with kernel size 2.
The input sequence is a length-60 sine function with two full oscillations (0 to 4π). As seen in the
figure, while output feature maps produced by the iTCN remain symmetrical in polar coordinates, the
first half of the output sequence produced by the TCN is distorted by zero-padding, thus degrading
the fidelity of output feature maps.

The second implementation, the iResNet, is also composed of stacks of “residual blocks,” but is
different from the iTCN in that the exponential receptive-field increase is achieved through max
pooling layers, instead of dilated convolutions. A max pooling layer of kernel size 2 and stride
2, which combines every two adjacent feature vectors into one by selecting the maximum value,
is added after every “residual block” to distil information extracted. After every such operation,
the temporal dimension is reduced by half, while the number of hidden dimension is doubled until
a specified upper limit. Unlike the iTCN, the feature vectors in the iResNet output layer do not
have a one-to-one correspondence to the input sequence because the temporal dimension of the
output feature map is reduced by a factor of 2D−1, where D is the network depth. Because of this
discreteness of featurisation, the iResNet is only invariant to phase shifts of 2D−1 steps (when the
input sequence length is divisible by the same factor). Nevertheless, the iResNet potentially benefit
from data augmentation of the input-sequence initial phase, as could non-invariant networks.

3 Results

We first perform an ablation study where the iTCN/iResNet is compared to the TCN/ResNet to
identify the gains made solely by cyclic-permutation invariance. Input data is given in phase-space in
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Model MACHO OGLE-III ASAS-SN

iTCN 92.7%± 0.43% 93.7%± 0.09% 94.5%± 0.14%
TCN 92.0%± 0.35% 92.9%± 0.11% 93.0%± 0.20%

−1 (−0.58%
+0.05%
−0.17%) (−0.75%

+0.04%
−0.02%) (−1.52%

+0.12%
−0.09%)

iResNet∗ 92.6%± 0.45% 93.7%± 0.09% 93.9%± 0.14%
ResNet 92.1%± 0.34% 93.4%± 0.11% 93.2%± 0.22%

−1 (−0.48%
+0.05%
−0.13%) (−0.25%

+0.03%
−0.02%) (−0.64%

+0.01%
−0.07%)

GRU 92.3%± 0.37% 92.8%± 0.19% 93.6%± 0.42%

−2 (−0.34%
+0.05%
−0.02%) (−0.86%

+0.17%
−0.13%) (−0.71%

+0.07%
−0.12%)

LSTM 91.7%± 0.53% 92.6%± 0.61% 93.5%± 0.23%

−2 (−0.93%
+0.45%
−0.16%) (−0.85%

+0.17%
−0.48%) (−1.00%

+0.11%
−0.06%)

1Absolute difference compared to the invariant version of the same network.
2Absolute difference compared to the best performing network.
∗Semi-invariant due to use of discrete max-pooling layers.

Table 1: Ablation study test accuracies demonstrating gains afforded by cyclic-permutation invariance.
Test accuracies are the mean values for 8 different data splits. The network with the top accuracy for each
dataset is shown in bold. We apply randomised, stratified 60/20/20 train/validation/test splits for each dataset.
To properly account for dataset boot-strapping noise—accuracy variations due to the particular choices of
data splits—the same random splits are used to test every network, whose accuracies are compared pairwise
in splits. Median test accuracy differences of the different data partitions are shown in parentheses with the
uncertainty interval corresponding to 1-σ range of test accuracy differences calculated pair-wise for the same
random partitions of data (see footnote above). The standard deviation of the accuracy differences, rather than
the accuracy themselves, should then serve as the basis for comparison. Within each split, each full light-curve
is divided into sequences of length 200 in temporal order and transformed into phase-space with respect to the
period provided in the catalogs. Compared to random sampling, subdividing by temporal order preserves the
irregular samplings which resemble how data is accumulated. Each segment is then individually normalised
(zero-mean and unit variance) while measurement times are rescaled by the period into phase ([0, 1]). The
measurement phase intervals ∆~φ are fed together with the rescaled light curve as inputs to the network. The
mean and standard deviation of each light curve segment, along with log(p), are concatenated to the network
output layer as auxiliary inputs. We perform extensive hyperparameter optimisation for each pair of network and
dataset (see Appendix A).

all cases as the advantages compared to time-space have been demonstrated in previous studies [9].
RNN baselines of GRU [15] and LSTM [16] are also included as additional baseline methods for
comparison. The networks are trained on fixed-length light-curve segments (L = 200) from three
periodic variable star datasets (see Appendix B): the All-Sky Automated Survey for Supernovae
(ASAS-SN; [17, 2]), the Massive Compact Halo Object (MACHO; [3]), and the Optical Gravitational
Lensing Experiment (OGLE-III; [1]). Details of the ablation study are provided in the Table 1
caption. As shown in Table 1, the improvements of the iTCN and the iResNet from their respective
non-invariant baselines, as well as the RNNs, are significant by more than 5-σ in most cases,
demonstrating the advantages of cyclic-permutation invariance. The improvements in classification
accuracies correspond to reductions in overall error rates by between 4% to 22%, depending upon the
non-invariant baseline and the dataset.

We then compare the iTCN/iResNet with published results in the literature, which include time-space
RNNs and Random Forests. Becker et al. [11] presents OGLE-III classification results with their
time-space GRU and a Random Forest baseline [18]. As seen in Table 2, the cyclic-permutation
invariant networks outperform both results. The invariant network accuracies are significantly higher
for most classes, reducing error rates by as much as 69% for the minority classes. We find this
result to be critically important, as the hard-to-classify minority classes are tend to be the least
well-understood and often are the most interesting to identify for further study. Additionally, Naul
et al. [9] published Random Forest benchmark accuracies for the MACHO dataset of 90.50% with
the Richards et al. features [7] and 88.98% with the Kim/Bailer-Jones features [8], although these
benchmarks would have lower accuracies if preformed strictly within our data partitioning scheme
(see Appendix B).
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Class iTCN iResNet GRU1 RF2

Cep 98.3%±0.3% 98.4%±0.7% 72% 97%
RRab 99.7%±0.1% 99.7%±0.4% 85% 99%
RRc 99.0%±0.2% 99.1%±0.1% 30% 98%
Dsct 97.6%±0.8% 97.8%±0.6% 72% 93%
EC 87.9%±0.9% 87.8%±0.7% 54% 79%
ED 95.0%±0.3% 94.8%±0.4% 93% 92%
ESD 68.7%±1.0% 70.7%±0.9% 24% 61%
Mira 97.1%±0.6% 96.8%±0.3% 92% 97%
SRV 96.0%±0.4% 95.9%±0.2% 93% 82%
OSARG 93.2%±0.4% 93.4%±0.2% 90% 97%
Mean 93.4% 93.3% 70.5% 89.5%
1Time-space GRU with grouping moving window. [11]
2Random Forest with 59 features generated from the light curve data. [11, 18]

Table 2: Test accuracies for OGLE-III full-length light curves compared to classifications from the
literature. The Becker et al. time-space GRU work groups each full OGLE-III light curve with a moving
window of size 50 and stride 25, whereby the effective sequence length is reduced by a factor of 25, thus
alleviating the vanishing gradient problem. To facilitate this comparison, we have used the same OGLE-III
data selection as their work (see Methods). Since a L > 300 requirement has been applied to their OGLE-III
data selection, we trained the iTCN/iResNet on L = 300 segments, and average classifications on L = 300
segments for each full light curve during testing. For all but one subclass, the cyclic-permutation invariant
networks outperform previous results. Similar to Table 1, we note that uncertainties are dominated by the
bootstrapping noise arising from randomized data partitioning, and as such, are only upper limits to uncertainties
in the accuracy differences for each class.

4 Conclusion

We have presented a summary of cyclic-permutation invariant networks [4], which explicitly embed
temporal periodicity in CNN architectures. Such networks achieve state-of-the-art performance in
variable star classification, and is applicable to periodic data in a wide range of science domains.

Broader impact

The development of robust automatic classification systems in the next generation public astronomical
surveys enables researchers with less access to expensive computational facilities to more easily
acquire structured data. It also allows a broader participation in observational science which is
previously restricted to those with (usually exclusive) access to observing resources.
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Appendix

A Neural Network Hyper-Parameter Optimization

We search for optimal hyper-parameters independently for each network and for each dataset with
the validation set in a fixed train/validation/test split. For all networks, among possible combinations
of input features: phase interval (∆~φ), magnitude (~m), magnitude change (∆~m), and gradient
(∆~m/∆~φ), we find the combination of (∆~φ, ~m) to yield the highest validation accuracy. For
iTCN/TCN, we perform a hyper-parameter search over network depth (6, 7), hidden dimension (12,
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24, 48), dropout (0, 0.15, 0.25), and kernel size (iTCN/TCN: 2, 3, 5). For iResNet/ResNet, we
perform a grid search over initial hidden dimension (16, 32), maximum hidden dimension (32, 64),
network depth (4, 5, 6), and kernel size (3, 5, 7). For GRU/LSTM, we search over network depth (2,
3), hidden dimension (12, 24, 48), and dropout rate (0, 0.15, 0.25). We find that a dropout rate of
0.15 works best for both GRUs and LSTMs across all three datasets, while no dropout works best for
all other networks.

All networks are trained with the ADAM optimiser [19] with initial learning rates of 0.005, which are
scheduled to decrease by a factor of 0.1 when training loss does not decrease by 10% for 5 epochs.
Models are saved at the best validation accuracy for testing.

B Data

B.1 All-Sky Automated Survey for Supernovae (ASAS-SN) Data

The ASAS-SN dataset consists of 282,795 light curves from eight classes of variable stars: 288
W Virginis (p > 8 day), 102 W Virginis (p < 8 day), 941 Classical Cepheids, 297 Classical Cepheids
(Symmetrical), 1,631 Delta Scuti, 25,314 Detached Eclipsing Binaries, 12,601 Beta Lyrae, 43,151
W Ursae Majoris-type, 2,149 High Amplitude Delta Scuti, 9,623 Delta Scuti, 14046 Rotational
Variables, 26,956 RR Lyrae type A/B, 7,469 RR Lyrae type C, 364 RR Lyrae type D, and 137,847
Semi-regular Variables. The class label of each variable star is classified by [20] and only those with
class probability greater than 99% are used. The maximum number of full light curve per class is
capped at 20,000 to reduce the number of light curves of the dominant classes. Finally, segmenting
into L = 200 chunks results in 106,005 fixed-length light curves.

B.2 Massive Compact Halo Object (MACHO) Project data

The MACHO dataset consists of 21,470 red band light curves from eight classes of variable stars:
7,403 RR Lyrae AB, 6,833 Eclipsing Binary, 3,049 Long-Period Variable Wood (sub-classes A–D
were combined into a single super-class), 1,765 RR Lyrae C, 1,185 Cepheid Fundamental, 683
Cepheid First Overtone, 315 RR Lyrae E, and 237 RR Lyrae/GB Blend. Segmenting into L = 200
chunks has resulted in 80,668 fixed-length light curves. Although we have use the same MACHO
dataset as [9], our results are not directly comparable because [9] preformed randomised train/test
split on the L = 200 segmented light curves, which have caused different versions of the same
light curve to exist in both training and test split, resulting in information leakage and thus a higher
accuracy.

B.3 Optical Gravitational Lensing Experiment: OGLE-III

The OGLE-III dataset is identical to that used in [11], except for the selection of OSARGs. The
OGLE-III data consists of 357,748 light curves from ten classes of variable stars: 6862 Eclipsing
Contact Binaries, 21503 Eclipsing Detached Binaries, 9475 Eclipsing Semi-detached Binaries, 6090
Miras, 234,932 Small Amplitude Red Giants (OSARG), 25943 RR Lyrae type A/B, 7990 RR Lyrae
type C, 34835 Semi-regular Variables, 7836 Classical Cepheids, 2822 Delta Scuti. Of the 234,932
OSARGs, 40,000 random ones are selected. Absent of a fixed random seed in their relevant code
section, we have not been able to procure their exact selection, although the number selected is large
enough for the difference to be small. Finally, segmenting into L = 200 chunks results in 540,457
fixed-length light-curves.
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