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Abstract
Fine-grained estimation of galaxy merger stages from observations is a key problem
useful for validation of our current theoretical understanding of galaxy formation.
To this end, we demonstrate a CNN-based regression model that is able to predict,
for the first time, using a single image, the merger stage relative to the first perigee
passage with a median error of 38.3 million years (Myrs) over a period of 400
Myrs. This model uses no specific dynamical modeling and learns only from
simulated merger events. We show that our model provides reasonable estimates
on real observations, approximately matching prior estimates provided by detailed
dynamical modeling. We provide a preliminary interpretability analysis of our
models, and demonstrate first steps toward calibrated uncertainty estimation.

1 Introduction
Galaxy merging plays a fundamental role in our current theoretical understanding of galaxy formation.
Mergers significantly affect galaxy morphology, converting rotationally-supported disk galaxies into
velocity-dispersion-supported elliptical galaxies [Toomre, 1964]. Gas-rich mergers at high redshift
have also been shown to trigger central gas inflow, starburst, and galactic bulge formation [Zolotov
et al., 2015], and gas-poor mergers enlarge the radii of elliptical galaxies [Oser et al., 2012].

Although mergers are present in all theoretical models, observational evidence of their potential effects
on galaxies remains elusive. A key challenge in correlating observations with galaxy transformations
is calibrating the merger stage: galaxy merging is by definition a dynamical process that takes several
million years, and observations that we can record in our lifetime provide only a single time-slice
snapshot of such a process. The two approaches used to identify mergers in the sky — counting pairs
of galaxies through deep spectroscopy [Duncan et al., 2019] and identifying indicative morphological
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perturbations [Bluck et al., 2012] — both present biases based on the assumed observability of
merger stages. Accurate merger stage estimation is also useful for measuring a global merger rate:
the number of mergers per unit time and volume in the universe. Determining the observability
time scale is crucial to measuring these merger rates. This rate is useful for validating cosmological
models [Lotz et al., 2011].

In recent years, there have been several attempts to calibrate galaxy merger detection using state-of-
the art simulations that provide dynamical information which is lacking in observations [Lotz et al.,
2008, Snyder et al., 2019]. Machine learning has emerged as a strong tool to learn merger properties
in simulations [Pearson et al., 2019, Snyder, 2019, Ferreira et al., 2020]. These preliminary works
have shown that deep learning can successfully classify galaxies into interacting and non-interacting
systems using simulation-provided labels. The domain shift to observations still remains a challenge
though, as by definition, there is no available ground truth in the observations. Indirect sanity checks
such as visual example inspection or comparing with standard morphologies can be undertaken, but
it is still difficult to control for all possible systematics [Ferreira et al., 2020, Pearson et al., 2019].

In this work, we go several steps further into the characterization of galaxy mergers using deep
learning. First, we move from a classification to a regression problem to predict the exact time of
a given image of a merger within a merger process. We show that merger stage prediction with a
median absolute error of 38.3 million years (Myrs) over a window of 400 Myrs is possible based on a
single image and without using any dynamical modeling. Second, we test our model on a well-known
system, the Antennae galaxies. Our models trained on simulation snapshots successfully predict the
merger stage to the the correct order of magnitude on real observations, matching estimates produced
by detailed dynamical modeling. We also explore first steps to measure model uncertainty, and
uncover visual indicators on which the model relies.

2 Data
2.1 Simulation Data
2.1.1 Cosmological Simulation: We use the cosmological hydrodynamical simulation Horizon-AGN
[Dubois et al., 2014]. The simulation employs an adaptive mesh refinement Eulerian hydrodymamics
procedure using RAMSES [Teyssier, 2002]. Galaxies are then identified using the AdaptaHOP
structure finder [Aubert et al., 2004] over the stellar distribution, using a minimum stellar mass of
108 solar masses. The merger trees for the identified galaxies are then built using the procedure
outlined in Tweed et al. [2009]. More details on the Horizon-AGN simulation and structure finding
are provided in the Appendix.

2.1.2 Selection of Galaxy Mergers: We consider only galaxies more massive than 1010 solar masses
in the redshift range z = [0.5, 3]. This is intended to match current deep Hubble Space Telescope
observations such as the CANDELS survey [Grogin et al., 2011]. We then use the galaxy merger trees
from the simulation to select major galaxy mergers following a standard approach of thresholding
the stellar mass ratio between the secondary and main progenitor galaxies such that M1/M2 < 4
[Rodriguez-Gomez et al., 2015].

After this initial selection, we build merger sequences which are a complete tracking of the merger
process with a time resolution of ∼ 17 Myrs. To do so, we first follow each progenitor backward in
time, until the progenitors reach a calibrated distance from each other prior to merging (Appendix
5.2). We call ts the time between the sequence’s beginning and the first encounter between galaxies
(tfirst pass). We follow the sequence forward in time by the same amount, so that the duration of
the entire merger sequence is ∆T = 2 × ts. The ith snapshot in the sequence occurs at a time ti.
Snapshots with time −ts < ti < 0 are considered to be pre-merger, and snapshots with a time
0 < ti < +ts are considered to be post-merger. Since the absolute duration of a merger depends at
first order on the dynamical time, we normalize all values by the cosmological dynamical time which
we estimate to be tdyn ∼ 0.14tH . Here, tH is the Hubble time 1/H(z) at the observation’s redshift.

2.1.3 Image Generation: We generate observed images of all the snapshots of the selected merger
sequences. Images are produced to replicate properties of Hubble Space Telescope imaging of the
CANDELS survey in seven different filters going from the near UV to the near IR (F435W-F160W).
We use SUNSET for image generation [Kaviraj et al., 2017, Laigle et al., 2019], which models the
emission of all galaxy photons to produce an image in the observed-frame. We generate three different
projections along the main axes of the simulations (X,Y, Z). For this work, dust effects in the image
generation are not included for computational reasons. We use noiseless images since we want to test
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whether deep networks can generalize well enough to learn the properties of galaxy mergers based
only on examples. We therefore want to maximize the amount of signal in this proof-of-concept work.
An example of a merger sequence is shown in Figure 1.

Figure 1: 17 samples from a galaxy merge sequence with 34 observations, with an average redshift of 2.146. We
show two channels of seven. The first observation (t−16) corresponds to a normalized time of -0.24, and the last
t+17 corresponds to 0.58. The observation at time tfirst pass is indicated by t0 = 0.

2.2 Antennae Observations

In addition to simulation data, we use archival Hubble Space Telescope observations of the Antennae
galaxies (NGC 4038/NGC 4039) to test our model1. This well-known system is an archetypal major
merger at redshift z = 0.05 which has been extensively modeled [Karl et al., 2008, Lahén et al.,
2018]. Observations have two channels: F160W and F850LP. In order to better match the properties
of the higher redshift training set, we modify the Antennae system observations as if it was observed
at high redshift. Given that we are not interested in the absolute flux, we simply apply a spatial
scaling to match the angular scale at z = 1.5. We do not apply dimming to match the high SNR in
the training set.

3 Methods
3.1 Image Pre-processing

Images produced by the Horizon-AGN simulation go through a multi-step pre-processing pipeline.
Views from each filter (F160W-F435W) are stacked in the channel dimension of each image. Images
are then cropped to a 80 × 80 window centered around the point with maximum total intensity.
We take this approach to avoid regression target leakage; a simple rescaling would yield an image
with apparent galaxy size that correlates with merge state. This resolution-label correlation is not
present in real galaxy views, so we take care to avoid label leakage and model degeneracy. Images
are augmented before being fed as model input: randomly flipped, rotated in increments of 90°,
jittered, and rescaled. Regression labels are produced through the normalization procedure described
in Section 2.1.

Our Horizon-AGN simulation dataset consists of 6337 galaxy merge sequences, with an average
sequence length of 32 time-steps symmetrically straddling t0. Across all sequences, there are 203667
individual observations, with three views per observation. We divide our simulation images into train,
validation, and test datasets with a 80%-10%-10% split. Projections from the same merger never
occur in more than one split.

3.2 Models and Training Methodology

We use a convolutional neural network to regress merger time. In particular, we employ a standard
ResNet-50 architecture [He et al., 2016] to process each input image and produce two regression
outputs: the merge time estimate t and an uncertainty score σ. For models with mass and redshift,
we add in a fully-connected layer to embed the mass and redshift features before adding this to each
ResNet-block output. We also train models specifically to evaluate Antennae observations, only using
the F160W and F850LP channels in our training dataset to match the Antennae samples.

To simultaneously learn uncertainty (σ) and merger time (t), we minimize the sum of a scaled MSE
and σ estimate, as in Lakshminarayanan et al. [2017]: log σ2

2 + (t−t̂)2
2σ2 . This is effectively minimizing

the log-likelihood criterion for a normal mean/variance estimate. We also add in an 0.0001-weighted
L2 regularization term on the trainable weights, yielding our final loss criterion.

We use a standard Momentum SGD optimizer with global norm-based gradient clipping set to 5.0
[Sutskever et al., 2013]. We set an initial learning rate of 0.025 and use a stepwise-decay schedule,
reducing by a factor of 0.1 after 50K and 100K steps. Each model completes training after 150K
steps, roughly 7 hours using 2 V100 GPUs.

1https://www.spacetelescope.org/projects/fits_liberator/antennaedata/
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Figure 2: Alignment of ground truth and predictions for ±400 Myrs (left) and ±200 Myrs (right). Red dashed
line: perfect alignment. Black dotted line: the median prediction. Black dashed lines: the prediction variance.

For our Antennae evaluation, we employ the test-time augmentation methodology proposed in Sun
et al. [2020] to better address the simulated-to-real domain gap. We use their self-consistency loss
across augmented image views to fine-tune the model for an additional twenty steps.

4 Results
4.1 Testing on Simulation
We first evaluate trained models on our test split of simulation images. On the full range of merger
sequence snapshot times (±400 Myrs), our regression models obtain an root mean square error of
144.1 Myrs. We find that our model’s largest errors skew toward the edges of the time interval; the
largest errors are early pre-mergers, and the median absolute error is 69.35 Myrs. Interestingly, we find
that we obtain slightly better estimation accuracy using a model trained on samples ±200 Myrs range
around the merge. On this time window, the model obtains an RMSE of 68.153 Myrs and median
absolute error of 38.391 Myrs. When classifying mergers as either pre- and post-merger (thresholding
the predictions and ground truth by t > 0 or t ≤ 0), our model obtains 86% classification accuracy
on our full range of merger sequences, comparable to prior work [Ferreira et al., 2020].

Figure 2 shows alignment between ground truth and predictions for both these models, along with
each model’s scaled uncertainty estimate. As previously observed on the full range, our model’s
median prediction diverges from targets for early pre-mergers. Otherwise, we find reasonable ground
truth/prediction alignment, especially for our half-range models. Our uncertainty estimate seems to
visually indicate examples outside the scatter (dark brown in the full-range interval, light blue in the
half-range interval), and grows more uncertain toward the weakest parts of the alignment.

4.2 Testing on Antennae Observations

We tested our two-filter, simulation-trained model on four redshift variants of the Hubble space
Telescope observations of the Antennae galaxy (z = 0.5, 1.0, 1.5 and 2.0). Our model re-
gressed normalized time estimates of µ = {0.167, 0.173, 0.181, 0.177} with a model estimated
σ = {0.094, 0.088, 0.082, 0.083}, respectively. Similar regression estimates suggest stability of the
model across redshifts. Existing dynamical models of the system [Karl et al., 2008, Lahén et al., 2018]
estimate that the time of observation is between 500-600 Myrs after first passage. This corresponds to
normalized times of 0.24− 0.29 at z = 0.05 (Figure 3). Our predictions are therefore in agreement
within 1σ despite resulting from crude approximations in simulation (lacking dust, noise, etc.). This
is extremely encouraging, as this is the first time a model trained on cosmological simulation has
been applied to an observed merger snapshot that has independent measurements.

Figure 3: Normalized time predictions for the four redshift variants of the Antennae observation, with prior
estimates highlighted in red (left) and the two-filter Antennae observations for z = 0.5, 1.0, and 1.5 (right).

4.3 Visual Model Analysis
We examined regions of input used by the model to produce its predictions. In Figure 4, we visualise
input gradients, which reflect the sensitivity of the network prediction to small changes in the input.
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We show five channels of three snapshots within a merge sequence (pre-, middle-, and post- from top
to bottom) with redshifts of 0.98, 0.84, and 0.70, respectively.

We observe that the patterns of attention depend on wavelength and on the merger stage as expected.
Infrared filters (optical rest-frame) tend to focus on the central parts of the galaxies where most of
the stellar light comes from. In the pre-merger phase, we clearly see the cores of the two galaxies
highlighted. UV rest-frame bands focus more of their attention in the outskirts of the system. This is
particularly visible in the post-merger phase. It is likely capturing young stars being formed in the
outer regions as a consequence of the interaction.

4.4 Conclusions
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Figure 4: Example of input gradients within a
merge sequence. Rows show different times
in the sequence (image+activation). Columns
indicate different filters from near -infrared
(F160W) to near-UV (F435W).

Our work shows that temporal constraints on astrophysi-
cal observations can be established. We provide evidence
that such approaches can be effectively applied to real
world observations, while providing some measure of in-
terpretability. We encourage study of the effects of merg-
ers on galaxy evolution from a computational perspective.

5 Appendix
5.1. Horizon-AGN and AdaptaHOP Configuration.
Horizon-AGN was run with a co-moving box size of Lbox
= 100h−1 Mpc, that contains 10243 DM particles, and
that was run considering initial conditions drawn from
the WMAP-7 cosmology. The simulation employs the
adaptive mesh refinement Eulerian hydrodymamics code,
RAMSES [Teyssier, 2002], and the initially coarse 10243
grid is adaptively refined, in a quasi-Lagrangian manner,
down to a spatial resolution of 1 proper kpc. The Adap-
taHOP structure finder [Aubert et al., 2004] was used to
identify galaxies, using a minimum threshold of 50 stellar
particles (corresponding to a minimum stellar mass of 108 solar masses). The merger trees were built
considering 758 time steps that cover a redshift range spanning from z = 7 to z = 0 and with a time
difference of ∼ 17 Myrs on average between two successive time steps.

5.2. Galaxy Selection. We look for an increase in the mass of a galaxy due to the contribution of
more than one progenitor from the previous time step. If a galaxy has more than one progenitor and
the ratio between the stellar mass provided by the secondary and the main progenitor is equal or
larger than 1:4, the galaxy is considered as a major merger, and therefore enters our selection. To
construct the entire merger sequence from tfirst pass, we fellow the progenitors until the secondary
progenitor is separated from the main progenitor by a distance larger than four times its effective
radius. This is an arbitrary selection that defines the beginning of our merger sequence. It has been
calibrated empirically to properly bracket all the different phases of a merger

5.3. Image Generation. For each identified galaxy in the simulation, we define a cubic volume
centered around the galaxy with an edge length of eight times the radius of the galaxy (in this case,
defined as the average between the three semi-axes obtained when fitting an ellipsoid to the stellar
mass distribution of the galaxy). This volume should contain the stellar particles from the main
galaxy as well as those from any close companion, in order to capture both galaxies involved in the
merger. The stellar particles contained within the volume are used as an input to SUNSET, along
with the spectral response of the different filters. SUNSET computes the fluxes corresponding to the
inputs using the stellar models of Bruzual and Charlot [2003] and a Chabrier [2003] IMF. Finally, the
integration of the SED in each pixel and the redshift of the galaxy are used to generate an image in
the observed frame.

5.4. Broader Impacts This work proposes an approach for fine-grained estimation of galaxy merger
stage using astrophysical simulations. We believe that this work will allow astronomers to improve
understanding of galaxy formation by tracking down with unprecedented accuracy the impact of
mergers on galaxy transformations over cosmic time. More broadly, this work may be of interest to
researchers in computational astronomy and applied machine learning. We believe there is little scope
to misuse the artifacts of this work, which uses computational methods to analyze astrophysical data.
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