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Abstract

Testing the compatibility between experimental observations and hypotheses about
nature is the heart of the scientific method. This often requires us to model the
probability density of possible observations, which is a challenging analytic task
when data are multi-dimensional. We show that density models describing multiple
observables with (i) hard boundaries and (ii) dependence on external parameters
may be created using an auto-regressive Gaussian mixture model. The model is
made more expressive using a novel method in which data are projected onto a
custom latent space. The method is demonstrated on particle physics data sensitive
to anomalies in the electroweak production of a Z boson in association with a dijet
system. Such an approach may be applied to similar problems within other fields.

1 Introduction

In high-energy particle physics, we often wish to constrain a set of possible physical models according
to their consistency with experimental observations x ∈ X. To do this we must model the probability
density p(x|θ), where θ ∈ Θ represent parameters of interest or hidden variables such as experimental
uncertainties. Analyses may use event selection criteria to enhance the relative contributions of the
physical processes under study, then measure high-level observables such as kinematic spectra, for
which the likelihood can be approximated by analysing simulations. A challenge of this approach is
to ensure that model separability is captured within these low-dimensional summary statistics.

It has recently been demonstrated that machine-learned density models may be constructed which
describe such densities (or density ratios) in a high-dimensional observable space X without the need
for binning [1–5]. Provided that model bias can be mitigated and systematic uncertainties properly
described, we can then compute p(x|θ) without the loss of sensitivity caused by discarding data,
binning, use of summary statistics or sub-optimal analysis design. Furthermore, it is often possible to
sample from density models, providing a compelling alternative to other stochastic generative models
such as generative adversarial networks (GANs) [6] and variational auto-encoders (VAEs) [7, 8] for
efficiently performing steps in a simulation chain [9, 10].

In this work, we construct a method in which datapoints are projected by function f : x 7→ u ∈ U
onto a latent space U which has the same dimensionality as X. An auto-regressive Gaussian mixture
model is used to describe the density pφ(u|θ), where φ label the parameters of several neural networks.
The use of a latent space has two aims:

1. It guarantees that hard boundaries in physical observables are respected, provided that these
boundaries are independent of all other observables.

2. The latent distribution is designed to be well described by a number of overlapping Gaussian
modes, each describing a local cluster of density. Variations of θ which induce deformations
in observable spectra can then be described by modifying individual Gaussian modes.
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2 Experimental setup

We consider the electroweak production of a Z boson in association with a dijet system at the
Large Hadron Collider (LHC). The kinematic spectra of such events were recently measured by
the ATLAS experiment [11]. Exclusion limits were derived for several parameters of the Standard
Model (SM) effective field theory (SMEFT) in the Warsaw basis [12, 13], which characterise
the presence of any novel physics phenomena in such interactions. We consider the conditional
dependence of four kinematic observables capturing distinctive characteristics of these particle
interactions, X = {mjj , mll, ∆φ (j, j) , ∆y (j, j)}, on the parameter Θ = {c̃W }. Ground truth
events are generated using the Madgraph5 (MG5) program at leading order in αS [14], showered
using Pythia8 [15, 16] and reconstructed using Rivet [17]. Neural networks are implemented
using TensorFlow v1.13.1 interfaced with Keras v2.2.4-tf[18, 19]. When training, 50% of the
data are used for validation and the early stopping method is used to mitigate overtraining. All
data are used when plotting. 400k datapoints are generated in increments of 0.1 on the interval
c̃W ∈ [−0.4, 0.4], except at the SM value of c̃W = 0 for which 1M datapoints are generated. Values
of c̃W ∈ {−0.3,−0.1, 0.1, 0.3} are not used to train the density model but to test its inductive bias.

3 Overview of method using one dimensional example

We first consider a one-dimensional case where x = ∆φ (j, j) and is restricted to the domain
x ∈ [−π, π]. The distribution p (x|c̃W = 0) is shown in Figure 1 (top left). To project onto the
latent space, we construct a response curve between the physical boundaries of x. This is written as
Qx (x) = f ·Dx (x) + (1− f) · Lx (x) where Dx (x) is the cumulative distribution function of the
training data at c̃W = 0 and Lx (x) is a linear function. The hyperparameter f is tuned to ensure that
wide regions in x are not collapsed onto narrow regions in u. We then construct a response curve
Qu (u) over the latent space, defined as the cumulative distribution function of a target distribution
q̃u (u) given by

q̃u (u) =
1

1 + exp[α(u− β)− γ]
· 1

1 + exp[−α(u+ β)− γ]
(1)
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Figure 1: Top left: p (x|c̃W = 0) with x = ∆φ (j, j), evaluated using MG5 events. Top right:
distribution over the latent space. Bottom left: response curve over the data space, Qx (x). Bottom
middle: response curve over the latent space, Qu (u). Bottom right: target distribution, q̃u (u).
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Figure 2: Gaussian mixture model over the latent space for the one-dimensional example of x =
∆φ (j, j). We show the comparison with MG5 events when c̃W = 0 (left) and c̃W = 0.4 (right).

The mapping function is defined as f (x) = Q−1
u (Qx (x)), and its derivation is shown visually in

Figure 1 (bottom). Parameter values of f = 0.8, α = 4, β = 3 and γ = 1 are chosen. Figure 1 (top
right) shows the distribution of p (u|c̃W = 0) using MG5 events. We compute Qu (u) as a piecewise-
linear function over the interval u ∈ [−5, 5], however this can be extended arbitrarily far in u so that
all sampled points u∗ ∈ U are mapped onto the physically allowed domain of X. The functions f
derived using c̃W = 0 are applied to all values of c̃W , so that variations in observable spectra become
parameterisable deformations of p (u|c̃W ).

The function q̃u is designed to have smooth tails and be significantly flatter than a Gaussian distri-
bution. This encourages the resulting p (u|c̃W ) to be well described by a mixture of many narrow
Gaussian modes, instead of being dominated by any single mode. This is demonstrated in Figure 2,
which shows the trained distributions for two values of c̃W in the ∆φ (j, j) example, using NG = 20.
Systematic mismodelling is below 5% except in the sparsely populated tails of the distribution. A
key observation is that both positive and negative deformations to the spectrum can be modelled as
modifications to the amplitudes, means and widths of the Gaussian modes local to the deformation.
This provides a mechanism for expressing the conditional dependence on external parameters, as
well as the co-dependence between observables, as follows.

When modelling d observables, we construct an auto-regressive probability density

pφ (u|c̃W ) =

d∏
i=1

pφ,i (ui|u<i; c̃W ) (2)

where i label observables and u<i is the list of all prior latent observables. Note that the model is
dependent on the observable ordering. Each conditional distribution is modelled as a sum of NG
Gaussian distributions N according to

pφ,i (ui|u<i, c̃W ) =

NG∑
g=1

fφ,g,i (u<i, c̃W ) · N (ui; µφ,g,i (u<i, c̃W ) ; log σφ,g,i (u<i, c̃W )) (3)

where fφ,g,i, µφ,g,i and log σφ,g,i are respectively the amplitude, mean and log-width of the gth

Gaussian subject to
∑NG

g=1 fφ,g,i = 1 ∀ i. These are modelled using neural networks which capture
the dependence on prior observables and external parameters.

4 Extending to four dimensions

To extend the model to all four observables, hyperparameter values of f = 0.2, 0.8, 0.2 and 0.8 are
chosen for mjj , mll, ∆y (j, j) and ∆φ (j, j) respectively. We sample the trained density model 500k
times by randomly drawing u∗0 ∼ pφ,0 (u0|c̃W ), u∗1 ∼ pφ,1 (u1|u∗0; c̃W ) and so on until datapoints u
in four dimensions are constructed. These are transformed back onto data space using x∗ = f−1 (u∗).
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Figure 3 compares the one-dimensional marginal distributions using the density model (red) and MG5
events (black) for c̃W = 0. Some mismodelling is observed up to the level of 5 %, most notably
in the ∆φ (j, j) distribution. Greater mismodelling is observed in the tail of ∆y (j, j). Figure 4
compares the two-dimensional marginal distributions for c̃W = 0. This demonstrates that the model
has captured the nontrivial high-dimensional correlations between the observables.

Figure 5 shows how the one-dimensional marginal distributions evolve as c̃W is scanned between
[−0.4, 0.4]. These are presented as a ratio with respect to the c̃W = 0 case. Whilst the data do not
show any clear dependence as a function of mjj , mll or ∆y (j, j), the ∆φ (j, j) distribution is seen
to oscillate in a nontrivial way as a function of c̃W . The density model has captured this dependence,
demonstrating that it can be used to perform a hypothesis test on an unbinned dataset.
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Figure 3: Marginal distributions of events sampled using the density model (red) compared with
those generated using MG5 (black) for a value of c̃W = 0. Shaded areas show sampling uncertainties.
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Figure 4: Two dimensional marginal distributions of events sampled using the density model (red)
compared with those generated using MG5 (black) for a value of c̃W = 0.
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Figure 5: Demonstration of how the marginal distributions evolve with c̃W , presented as a ratio with
respect to the SM at c̃W = 0. The dependence is well captured by the density model.

Broader Impact

The techniques described in this work are demonstrated for hypothesis testing within the field of high
energy physics, including but not limited to parameter estimation, scientific discovery, and the setting
of constraints on theoretical models. However, we anticipate that they may be applied to probabilistic
modelling tasks in any domain for which high dimensional observable distributions are expected to
be deformed by external parameter variations. We note that automisation of the method to general
scenarios would require careful validation beyond the scope of what has been tested in this work.

The model is potentially biased by (i) any assumptions and methods used to simulate the
experimentally-derived training data, (ii) the inductive bias imposed by the neural network ar-
chitectures when interpolating between training points and (iii) systematic mis-modelling. As is
common for traditional analyses within the field, such sources of bias must be carefully understood
and captured within final exclusion limits, and any remaining model dependence made clear. Whilst
the modelling and profiling of systematic nuisance parameters is possible in principle, we have not
demonstrated this in the current work.

Applied to the physical sciences, the work benefits those who wish to set the most stringent limits on
nature using their finite data. We hope that the continued development of trainable likelihood models,
for which this work contributes, will enable model testing using multiple datasets, allowing more
stringent limits to be set, or revealing inconsistencies or biases in the data not previously considered.
Applied to the physical sciences, the impact of unmitigated model bias would be the drawing of false
conclusions about nature. Applied within other fields, the impact of mis-modelling is defined by the
domain being considered.
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