

EXPRESSIVE DENSITY MODELS FOR HIGH ENERGY PHYSICS USING A CUSTOM LATENT SPACE

1. Motivation

- Particle physics datasets have many correlated observables
- Modified laws of physics expected to deform these distributions

hypothesis θ_1

hypothesis θ₂

- **Discovery potential** is maximised when we can model all observables $x = \{x_0, x_1, ...\}$ simultaneously, and capture the dependence on parameters of nature θ
- Achieved with **neural density models** $p(x|\theta)$
- This work: present novel modelling method which captures two key features:
 - existence of abrupt physical boundaries (x₁ in above)
 - parameterised deformations of spectra
 - Demonstrate on particle physics example
- Can be used to model data with these features in any domain

3. Experimental setup

Auto-regressive: latent observables modelled as conditional chain

$$p(u|\theta) = p(u_0|\theta) \times p(u_1|u_0,\theta) \times p(u_2|u_1,u_0,\theta) \times \dots$$

 Gaussian amplitudes/means/widths modelled using a neural net which learns conditional dependencies

$$p(u_n|u_{\leq n},\theta) = \sum_{g} f_g(u_{\leq n},\theta) \cdot \mathcal{N}(u_n;\mu_g(u_{\leq n},\theta),\log \sigma_g(u_{\leq n},\theta))$$

• Particle physics example: electroweak production of Z + 2 jets at LHC; four observables $\{m_{jj}, m_{ll}, \Delta \phi(j,j), \Delta y(j,j)\}$ and one parameter of interest $\{\tilde{c}_W\}$ from SMEFT describing modified physics

2. Explanation of method

- Data c.d.f. added with fraction \mathbf{f} to linear function, creating a response curve $Q_x(x)$
- Response curve Q_u(u) over a latent space smoothly approaches 0 and 1
- Mapping transforms data into a latent distribution (i) with smooth edges and (ii) well
 described by a Gaussian mixture model with multiple narrow modes
- Parameter variations deform spectra by modifying the amplitudes, means and widths of the Gaussian modes local to the deformation, leading to a highly expressive model

4. Results

• Test by sampling from the model and comparing with the ground truth

Ratios show parameter dependence is well modelled