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Abstract

The identity of dark matter remains one of the most pressing questions in physics
today. While many promising dark matter candidates have been put forth over the
last half-century, to date the true identity of dark matter remains elusive. While
it is possible that one of the many proposed candidates may turn out to be dark
matter, it is at least equally likely that the correct physical description has yet to be
proposed. To address this challenge, novel applications of machine learning can
help physicists gain insight into the dark sector from a theory agnostic perspective.
In this work we demonstrate the use of unsupervised machine learning techniques
to infer the presence of substructure in dark matter halos using galaxy-galaxy strong
lensing simulations in a proof-of-principle application.

1 Introduction

Since the discovery of dark matter, physicists have been searching the entirety of cosmic history,
from experiments at colliders to observations of the cosmic microwave background, for fingerprints
that might reveal the identity of dark matter. Most models work under the assumption that the dark
sector interacts, typically only very weakly, with the standard model, e.g. weakly interacting massive
particles (WIMPs) [1] and axions [2–4]. However, these models have avoided efforts at direct and
indirect detection [5–22], including searches at colliders [23, 24]. To date the only evidence for dark
matter comes from its gravitational interactions [25–28]. In light of this, it makes sense to explore
avenues to identify dark matter via its gravitational imprints.
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A promising means to identify the nature of dark matter is to study substructure in dark matter
halos, i.e. overdensities within the larger dark matter halo. Different models come into their own
on subgalactic scales which allow current and future observational programs to start to constrain
potential dark matter candidates [29–31]. While it is possible to study larger substructures such as
ultra-faint dwarf galaxies (see for example [32]), subhalos on smaller scales suffer from suppressed
star formation, making manifest the need for a gravitational probe. Promising directions to identify
substructure gravitationally include tidal streams [33–36] and astrometric observations [37–40].
Another avenue to consider is strong gravitational lensing which has seen encouraging results
in detecting the existence of substructure from strongly lensed quasars [41–43], high resolutions
observations with the Atacama Large Millimeter/submillimeter Array [44] and extended lensing
images [45–51].

Recently, promising results have been achieved with supervised machine learning algorithms for
identifying dark matter substructure properties with simulated galaxy-galaxy strong lensing images.
These include applications of convolutional neural networks (CNNs) for inference of population
level properties of substructure [52], classification of halos with and without substructure [53, 54]
and between dark matter models with disparate substructure morphology [53], as well as classifying
between lenses with different subhalo mass cut-offs [55]. In a similar spirit to these strong lensing
studies, Ref. [56] used a CNN to classify simulated astrometic signatures of a population of quasars as
being consistent with the presence of dark matter substructure in the Milky Way. Another interesting
direction, as pointed out in Ref. [53], is the application of unsupervised machine learning techniques
to this challenge.

In this work we present a proof-of-principle application for using unsupervised machine learning in
the context of identifying dark matter substructure with strong gravitational lensing. Specifically, we
utilize autoencoders, a type of unsupervised machine learning algorithm for anomaly detection (AD).
We show that after training adversarial [57], variational [58], and deep convolutional autoencoders
[59] on simulated strong lensing images without substructure, it is possible to identify data with
substructure as anomalous for further analysis. The application of an unsupervised machine learning
algorithm can serve as a first step in an analysis pipeline of strong lensing systems. Data which
are flagged as anomalous can be followed-up with a Bayesian likelihood analysis or a dedicated
supervised machine learning algorithm to identify the type of substructure observed.

2 Simulation of Strong Lensing Images

There is currently only a small sample of (real) strong galaxy-galaxy lensing images. Nonetheless,
simulated images can serve as a proof of principle data set to benchmark different algorithms before
the influx of data from Euclid and the Vera C. Rubin Observatory where we can expect thousands
of high quality lensing images [60, 61]. In this work the strong lensing images were simulated with
the PyAutoLens package [62, 63]. We simulate data for strong lensing with no substructure and
substructure from two disparate types of dark matter - subhalos of CDM and vortices of superfluid
dark matter. Images are composed 150× 150 pixels with a pixel scale of 0.5′′/pixel. Informed by
real strong galaxy-galaxy lensing images, we further include background and noise in our simulations
such that the lensing arcs have a maximum signal-to-noise ratio (SNR) of ∼ 20 [64]. We further
include modifications induced by a point-spread function approximated by an Airy disk with a first
zero-crossing at σpsf . 1′′.

We consider two models, Model A and Model B, for this analysis. The difference between the two
models is that all simulated images for Model A are held at fixed redshift while Model B allows the
lensed and lensing galaxy redshifts to float over a range of values. An additional difference is the
SNR in both models. Images for Model A have SNR ≈ 20 where Model B is constructed such that
simulations produce images where 10 . SNR . 30. It is clear then that Model B is a noticeably
more difficult training set. In practice though, since the redshifts of galaxies can be measured, one
can approximate Model A by binning lensing images by redshift prior to analysis.

3 Network Training and Performance Metrics

For training we use 25,000 samples with no substructure and 2,500 validation samples per class for
training the unsupervised models. The models are implemented using the PyTorch [65] package and
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Figure 1: ROC-AUC curve for unsupervised algorithms. Plots on left correspond to Model A, plots
on the right correspond to Model B.
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Figure 2: Reconstruction loss for architectures with Model A. Left to right: AAE, VAE, DCAE, and
RBM.

are run on a single NVIDIA Tesla K80 GPU for 500 epochs. We utilize the area under the receiver
operating characteristic (ROC) curve (AUC) as a metric for classifier performance for all our models.
For unsupervised models the ROC values are calculated for a set threshold of the reconstruction
loss. Additionally, for unsupervised models we use the Wasserstein distance, a measure of similarity
between probability distributions, as an additional performance metric.

4 Results

For this work four different unsupervised architectures were studied in the context of anomaly
detection - a deep convolutional autoencoder (DCAE), convolutional variational autoencoder (VAE),
an adversarial autoencoder (AAE) and a restricted Boltzmann machine (RBM). The ROC curves for
all four architectures applied to Models A & B are shown in Figure 1.

As expected for an algorithm whose design is not optimized for image inputs, the RBM model
has the poorest performance and proves to be unsuccessful in learning anything significant from
our training set. This is evident from the AUC values slightly above 0.5 for both Models A and B.
Although the RBM model does not distinguish well between images with differing substructure, its
low reconstruction loss implies that it does succeed in reconstructing the general morphology of the
lens.

Next, we turn to the autoencoder models. First, we consider the DCAE model. With an AUC of
≈ 0.730 for Model A, our DCAE shows good discriminating power at distinguishing images with
and without substructure. The improvement over the RBM is also clearly visible in the distribution of
reconstruction losses in Figure 2. However, the added complexity of the Model B data set significantly
degrades DCAE performance where the AUC decreases to ≈ 0.670.
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Architecture AUC W1

Model A
AAE 0.93207 0.22112
VAE 0.89910 0.22533
DCAE 0.73034 0.26566
RBM 0.51054 1.27070

Model B
AAE 0.76943 0.15563
VAE 0.73545 0.16617
DCAE 0.66992 0.23653
RBM 0.50870 1.25804

Table 1: Performance of architectures used in this analysis. W1 is the average 1st Wasserstein distance
for images without substructure.

Next we consider the variational autoencoder (VAE) which is trained with MSE and KL divergence
loss functions. Furthermore, we implement KL cost annealing where only the reconstruction loss is
used during the first 100 epochs and then the weight of KL divergence loss is gradually increased
from 0 to 1. With an AUC ≈ 0.899 our VAE achieves performance much closer to that of ResNet
for Model A, but it also suffers from a lower AUC of ≈ 0.769 for Model B in a more difficult
training scenario. The increase in performance relative to the DCAE, and RBM is easy to see from
the distribution of reconstruction losses in Figure 2 where images with substructure have noticeably
higher average reconstruction loss.

Finally, we consider an adversarial autoencoder (AAE) model trained on samples with no substructure
with MSE as reconstruction loss and cross-entropy loss for the discriminator network. The AAE
reaches top performance of our architectures with an AUC of ≈ 0.903 for Model A and ≈ 0.769 for
Model B. As with the VAE model, the reconstruction loss, see Figure 2, makes it evident how much
better the architecture performance is compared to the others.

As an additional performance metric for unsupervised architectures we calculate the average Wasser-
stein distance from our validation data set - results are compiled in Table 1. We first do this for
the no substructure class. As the Wasserstein distance is a geodesic between distributions, smaller
values correspond to distributions that are more similar. We find that the AAE and VAE achieve the
best performance and that of the DCAE is ∼ 20% larger by comparison. The ability of the RBM to
reconstruct the inputs is significantly degraded compared to the autoencoder models. Together, these
results are consistent with calculated AUC values for the architectures.

It is interesting to also consider the Wasserstein distance for data with substructure, i.e. a class that
the models were not trained on. All the autoencoders consistently have smaller distances for no
substructure compared to that calculated from substructure. Furthermore, the AAE and VAE seem to
be slightly better at reconstructing images for subhalo substructure versus vortices. This may be a
result of higher symmetry from the effects of subhalo substructure.

An interesting question to consider is whether unsupervised algorithms trained on the no substructure
class have the ability to disentangle images with vortices from those with subhalos. From the
distribution of reconstruction losses for vortices and subhalos separately, for both models, there isn’t
significant constraining power between the two types of substructure. As an additional check, we
trained the AAE model on the subhalo data to establish if there is any ability to distinguish between
the two different dark matter substructure models. We find that the autoencoder models are not
able to distinguish well between the two substructure classes. Interestingly, we find the average
reconstruction loss for the no substructure class to be lower than that for subhalos. We affirm this
result by calculating the Wassertein distances for our three classes of substructure, finding the no
substructure class to yield the lowest values for both models. This implies that the unsupervised
models used as anomaly detectors are able to accurately distinguish between the no substructure
and substructure scenarios, but are not able to accurately distinguish between the different types of
substructures (ie. differing types of anomalies). This is of course, a more naturally suited task for
dedicated supervised machine learning algorithms. One can further imagine an analysis pipeline
where unsupervised models are first used to identify potential anomalies for further analysis that can
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be performed with dedicated supervised machine learning classification algorithms or other more
traditional approaches.

5 Discussion & Conclusion

In this work we show that dark matter substructure can serve as a useful probe to constrain models of
dark matter. Concretely, different models of dark matter can lead to disparate morphology which can
manifest themselves observationally via their imprint on extended lensing arcs. It has been previously
shown that machine learning may even have the power to identify dark matter models based on
signatures unique to substructure [53]. In this work we have expanded on this idea, now utilizing the
power and versatility of unsupervised machine learning algorithms to identify the presence of dark
matter substructure in lensing images.

We have extended beyond the results from [53], where ResNet was trained as a supervised multi-
class classifier, to unsupervised models. Specifically, we have considered a restricted Boltzmann
machine, deep convolutional autoencoder, convolutional variational autoencoder, and an adversarial
autoencoder on two data sets with increasing complexity.

We found that the RBM model does not perform well for this task. Though a construction of a deep
belief network [66] may help to disentangle substructures, likely the downfall of the RBM can be
traced back to the loss of spatial information when the data is compressed to one dimension for
training. Inspired by our earlier results, we trained three types of convolutional autoencoders on data
containing no substructure. Both our AAE and VAE performed very well in distinguishing between
images with substructure on Model A, achieving high AUC scores. The added complexity of Model
B proved more challenging for both architectures - though they still have strong discriminating power.
Lastly, our implementation of a DCAE shows moderate success on both data sets.

By calculating the average Wasserstein distances for our data we further quantified the performance
of our architectures. We found that the AAE and VAE produced the most faithful reconstruction
of the input images, the DCAE is moderately degraded, while the RBM is significantly worse at
reconstruction of the data. Furthermore, by calculating the distances for the data with substructures,
we determined that Wasserstein distance is on average larger for these data - consistent with our
expectations. We also find that the AAE and VAE give a smaller geodesic distance between the input
and reconstruction for images with subhalos compared to those with vortices. An explanation for this
can be attributed to higher symmetry for a population of subhalos, i.e. its lensing signature is more
consistent with no substructure.

The results we obtained support the conclusion that unsupervised models can be a useful first step
in an analysis pipeline to establish the most anomalous (potentially promising) sources for further
follow up with dedicated supervised machine algorithms for further classification or with standard
Bayesian likelihood analysis techniques. The advantage of such a first step is that no model-specific
knowledge was assumed while looking for anomalous sources.

Broader Impact

This work serves to augment the understanding and application of machine learning in cosmology -
which is still very much in its initial stages. This work serves to increase the accessibility to those
interested in applications of machine learning for strong lensing applications around the globe as our
simulation dataset and analysis pipeline is open sourced. Given the computational requirements of
our implementation, those who have limited access to computing power may be at a disadvantage.
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