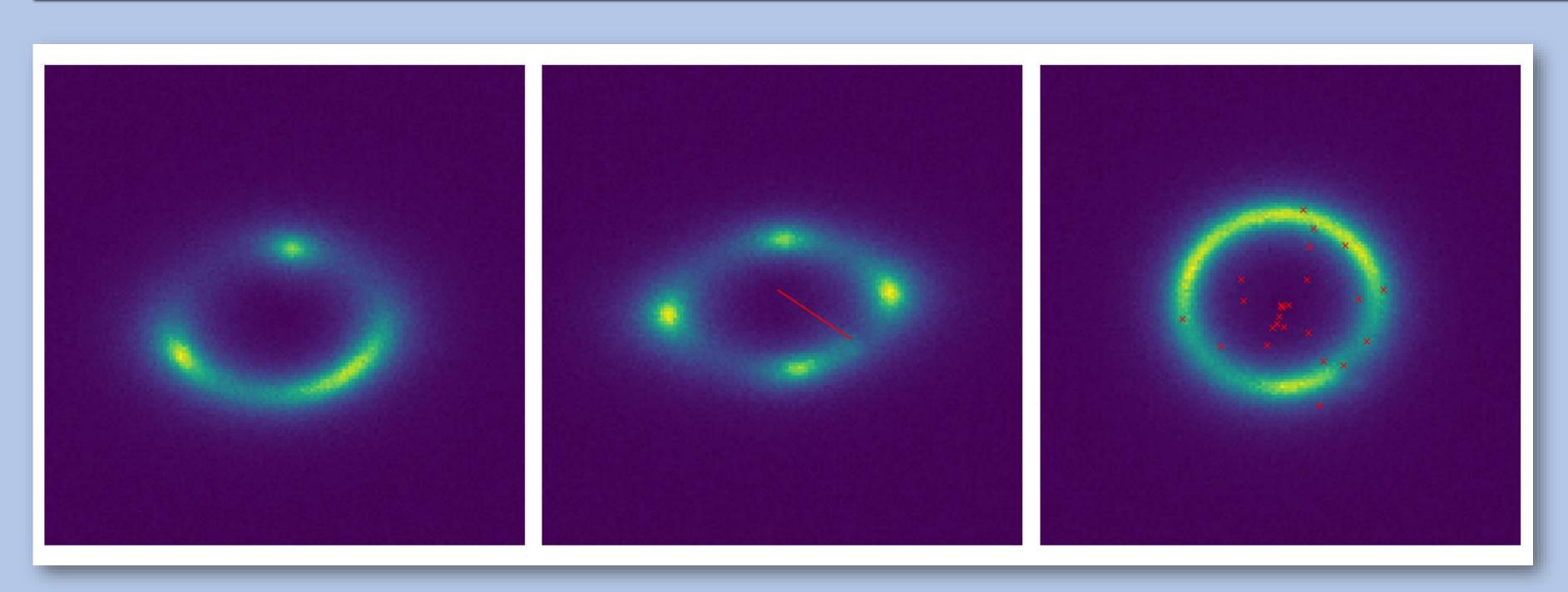
Decoding Dark Matter Substructure without Supervision

Stephon Alexander,¹ Sergei Gleyzer,² Hanna Parul,² Pranath Reddy,³ Michael W. Toomey,¹ Emanuele Usai,¹ Ryker Von Klar² ¹ Brown University; ² University of Alabama; ³ BITS, Pilani - Hyderabad Campus

- induced by substructure



Results: Our autoencoder architectures perform well at identifying images with arbitrary substructure!

- We calculate the AUC values from the distribution of reconstruction loss
- As an additional metric, we calculate the Wasserstein distance, a geodesic distance between probability distributions, to quantify how well architecture reconstructs images
- Our autoencoder architectures perform well at identifying data with substructure and the RBM performs poorly
- Anomaly detection models can identify substructure, however, automatically disentangling different forms of substructure still presents a challenge better addressed by supervised models

Goal: Identify and/or constrain models of dark matter based on gravitational signature • Different DM models can have disparate substructure - subhalos, vortices, disks • Promising probes include astrometric measurements, tidal streams, and gravitational lensing • Extended lensing arcs of galaxy-galaxy strong lensing images are sensitive to perturbations

with substructure

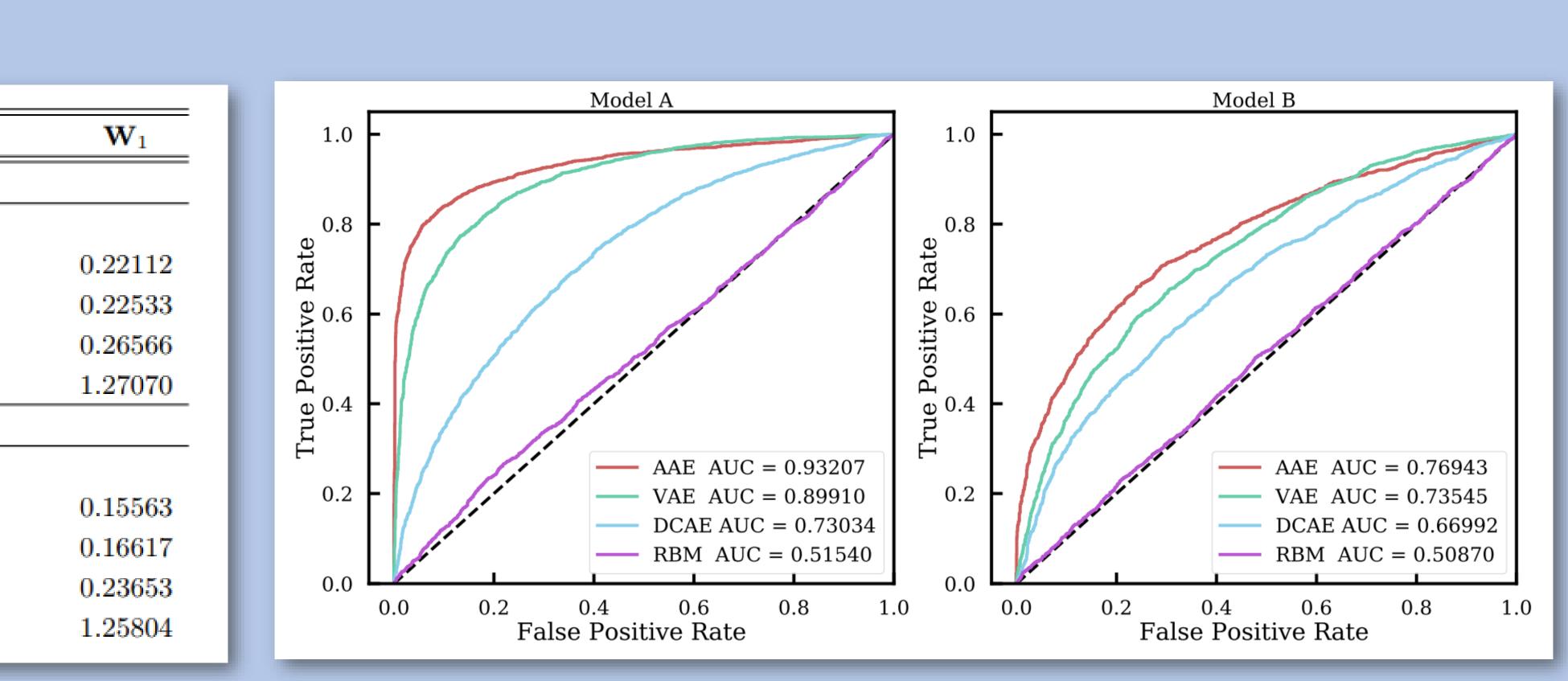
- software
- distance

	Architecture	AUC
Model A		
	ResNet-18	0.99637
	AAE	0.93207
	VAE	0.89910
	DCAE	0.73034
	RBM	0.51054
Model B		
	ResNet-18	0.99258
	AAE	0.76943
	VAE	0.73545
	DCAE	0.66992
	RBM	0.50870

Future work:

Method: Implement an anomaly detection approach to identify images • Training data - simulations of galaxy-galaxy strong lensing with vortex, subhalo, and no substructure using PyAutoLens • Train restricted Boltzmann machine, adversarial, variational, and deep convolutional autoencoders on data with no substructure to flag data with substructure as anomalous.

• Classify architecture performance with AUC and Wasserstein



• Construct higher fidelity simulations • Consider lensing effects from other dark matter models • Train graph-based models more suitable for sparser data

