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Abstract

One of the major goals of the field of Milky Way dynamics is to recover the grav-
itational potential field. Mapping the potential would allow us to determine the
spatial distribution of matter – both baryonic and dark – throughout the Galaxy.
We present a novel method for determining the gravitational field from a snapshot
of the phase-space positions of stars, based only on minimal physical assumptions.
We first train a normalizing flow on a sample of observed phase-space positions,
obtaining a smooth, differentiable approximation of the phase-space distribution
function. Using the collisionless Boltzmann equation, we then find the gravita-
tional potential – represented by a feed-forward neural network – that renders this
distribution function stationary. This method is far more flexible than previous
parametric methods, which fit narrow classes of analytic models to the data. This
is a promising approach to uncovering the density structure of the Milky Way,
using rich datasets of stellar kinematics that will soon become available.

1 Introduction

To know the gravitational potential of the Milky Way is to know the three-dimensional distribution
of matter. Stars and gas make up most of the baryonic mass of the Galaxy. However, dark matter
is only detectable through its gravitational influence. Mapping the gravitational potential in 3D
is therefore key to mapping the distribution of matter – both baryonic and dark – throughout the
Galaxy.

The trajectories of stars orbiting in the Milky Way are guided by gravitational forces. Were it possi-
ble to directly measure accelerations of individual stars due to the Galaxy’s gravitational field, then
each star’s acceleration would indicate the local gradient of the gravitational potential [12, 13]. This
would allow us to use Hamiltonian neural network approaches to learn the gravitational potential [6].
However, the scale of these gravitational accelerations – on the order of 1 cm s−1 yr−1 – is beyond
the ability of current spectroscopic and astrometric instruments to measure [14]. We instead observe
a frozen snapshot of stellar positions and velocities. The gravitational potential determines how the
phase-space density, the “distribution function,” evolves in time. Unless one invokes further assump-
tions, any gravitational potential is consistent with any snapshot of the distribution function, as the
potential only determines the time evolution of the distribution function. A critical assumption of
most dynamical modeling of the Milky Way is therefore that the Galaxy is in a steady state, meaning
that its distribution function does not vary in time [1, 2].

State-of-the-art dynamics modeling techniques generally work with simplified analytic models of the
distribution function and gravitational potential. The results produced by such techniques can only
be as good as the models that are assumed. This motivates us to go beyond simple parametric models.
Here, we demonstrate a technique that learns highly flexible representations of both the distribution
function and potential. Our method makes only minimal assumptions about the underlying physics:
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Figure 1: Overview of our method. Using observed phase-space information, we train a normalizing
flow to represent the distribution function, f (x⃗, v⃗). We represent the gravitational potential, Φ(x⃗),
by a feed-forward neural network. We update the neural network until the gradients of the potential
and the distribution function satisfy the collisionless Boltzmann equation for a stationary system.

1. Stars orbit in a time-independent gravitational potential Φ(x⃗).
2. We have observed the phase-space coordinates of a population of stars that are statistically

stationary (i.e., whose phase-space distribution does not change in time).
3. The gravitational potential is related to the matter density, ρ (x⃗), by Poisson’s equation:

∇2Φ = 4πGρ (x⃗). Matter density is non-negative everywhere. Thus, ∇2Φ ≥ 0.

We represent the distribution function using a normalizing flow, and the gravitational potential using
a densely connected feed-forward neural network. We train the normalizing flow to represent the
distribution of the observed phase-space coordinates of the stars, and then train the gravitational
potential to render this distribution stationary, subject to the constraint that matter density must be
positive. We thus use highly flexible representations for the distribution function and gravitational
potential, and apply only minimal physical assumptions.

2 Method

Our first assumption is that stars orbit in a time-independent gravitational potential, Φ(x⃗). The
density of an ensemble of stars in six-dimensional phase space (position x⃗ and velocity v⃗) is referred
to as the distribution function, f(x⃗, v⃗). Liouville’s theorem states that the total derivative of the
distribution function of a collisionless system (in which the stars are not scattered by close-range
interactions) is zero. For particles orbiting in a gravitational potential, this implies that

df

dt
=

∂f

∂t
+

∑
dimension i

(
vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

)
= 0 . (1)

This is known as the “collisionless Boltzmann equation.” Our second assumption, that the distribu-
tion function is stationary, implies that the density in any given region of phase space is constant in
time: ∂f

∂t = 0. This assumption links gradients of the distribution function to gradients of the grav-
itational potential. Once we can describe the distribution function of a stationary system, in almost
all cases, the gravitational potential can be uniquely determined by solving the collisionless Boltz-
mann equation (Eq. 1). Note that we do not assume that the gravitational potential is sourced by the
observed stellar population alone. Accordingly, we do not impose ∇2Φ = 4πG

∫
f (x⃗, v⃗) d3v⃗. Addi-

tional mass components, such as unobserved stars or dark matter, also contribute to the gravitational
field.

In practice, when we observe stellar populations, we obtain a discrete sample of points in phase
space, which we will refer to as {x̂, v̂}. We do not directly observe the smooth distribution function,
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f (x⃗, v⃗). A typical way of surmounting this difficulty is to fit a simple parametric model of the
distribution function to the observed sample of phase-space locations of stars (e.g., [3, 10, 11, 16]).
Here, we instead represent the distribution function as a normalizing flow, trained on an ensemble of
stars with measured phase-space information. We refer to the normalizing flow as fφ(x⃗, v⃗ ), where
φ refers to the trainable parameters in the flow. The best-fit flow parameters are those that maximize
the Poisson likelihood of the phase-space coordinates of the stars:

φ∗ = argmax
φ

[
ln p ({x̂, v̂} | φ)

]
= argmax

φ

[ ∑
star k

ln fφ(x̂k, v̂k)

]
. (2)

We thus obtain an approximation to the distribution function, fφ∗ . The great advantage of using a
normalizing flow is that our representation is both highly flexible and auto-differentiable.

After learning the distribution function, we find the gravitational potential Φ(x⃗) that renders the
distribution function stationary. The distribution is stationary if the sum in Eq. (1) evaluates to zero
everywhere in phase space. We also require that the matter density be non-negative everywhere in
space. By Poisson’s equation, which links the potential to the density, this implies that ∇2Φ ≥ 0.
We parameterize the gravitational potential as a feed-forward neural network, which takes a 3-vector,
x⃗, and returns a scalar, Φ. We denote the trainable parameters of this network by θ, and the resulting
approximation function as Φθ(x⃗). We design a loss function that penalizes both non-stationarity and
negative mass at phase-space points drawn from our approximation to the distribution function:

θ∗ = argmin
θ

⟨
sinh-1

∣∣∣∣∂fφ∗

∂t

∣∣∣∣+ λ sinh-1
(
max

{
−∇2Φθ, 0

})⟩
x⃗,v⃗∼ fφ∗

, (3)

where λ is a hyperparameter that sets the relative weight given to the stationarity and positive-mass
conditions (λ = 2 in this work), and ∂fφ∗/∂t is calculated by plugging ∂Φθ/∂x⃗, ∂fφ∗/∂x⃗ and ∂fφ∗/∂v⃗
into Eq. (1). The sinh-1 function is linear for small values, but lessens the influence of outliers.

In the following demonstration, we use a normalizing flow architecture similar to Glow [7], but
using rational-quadratic-spline coupling transforms [4] instead of affine coupling layers, and using
an independent rescaling of each axis instead of ActNorm layers. One step of our flow architecture
thus consists of an independent rescaling of each axis, an invertible 1×1 convolution and a rational-
quadratic-spline coupling transform. Our flow architecture contains four steps. We find that we
more accurately recover the distribution function with an ensemble of 960 normalizing flows trained
on identical data than with a single normalizing flow. The feed-forward neural network with which
we represent the gravitational potential has three densely connected hidden layers, each with 128
neurons, and produces a scalar output. We implement these models in PyTorch,1 and obtain φ∗ and
θ∗ through stochastic gradient descent, using the Rectified Adam optimizer [9].

3 Demonstration

We demonstrate our method on a toy physical system, in which both the potential and distribution
function can be expressed analytically. This constitutes a ground truth on which we can verify our
method. We choose the Plummer sphere, a self-gravitating system with a spherically symmetric
density and gravitational potential, given by

ρ (r) =
3

4π

(
1 + r2

)−5/2
, Φ(r) = −

(
1 + r2

)−1/2
. (4)

The Plummer sphere admits a stationary distribution function with an isotropic velocity distribution,
in which the distribution function is only a function of the energy E of the tracer particle (for
simplicity, we set mass m = 1 for all the particles):

f(r⃗, v⃗) ∝

{
[−E (r⃗, v⃗)]

7/2
, E < 0

0, E ≥ 0
, where E =

1

2
v2 +Φ(r) . (5)

We generate mock data by sampling 217 (131,072) phase-space points drawn from the above dis-
tribution function. Using these points as input data, we first fit the distribution function using an

1https://github.com/tingyuansen/deep-potential. A Tensorflow 2.3 implementation can be
found at https://github.com/gregreen/deep-potential.
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Figure 2: The ideal Plummer sphere distribution function (left panel), our trained ensemble of nor-
malizing flows (middle panel), and a comparison of the two (right panel). We depict phase space
in terms of radius and velocity, integrating over the four angular dimensions. Our ensemble of
normalizing flows performs well in regions of non-negligible density.
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Figure 3: Left panel: comparison of the theoretical Plummer sphere potential with our result at
random points drawn from phase space. The middle and right panels show our recovered potential
and matter density in a 2D slice of space with z = 0.

ensemble of 960 normalizing flows (see Eq. 2). Our results are shown in Fig. 2. Using our ensemble
of flows, we then draw 215 (32,768) phase-space points, and calculate the gradients ∂fφ∗/∂x⃗, ∂fφ∗/∂v⃗.
We use these samples to fit the gravitational potential (see Eq. 3). Our results are shown in Fig. 3.
We accurately recover the potential over a wide range of radii.

4 Conclusions

In this paper, we have shown that it is possible to accurately recover the gravitational potential
of a stationary system using a snapshot of a sample of phase-mixed tracers. Auto-differentiable
tensor frameworks are ideal tools for accomplishing this task, because of the need for smooth and
differentiable – yet highly flexible – representations of the distribution function and gravitational
potential. We have demonstrated that our method works on ideal mock data. Future work will
examine how to take observational selection functions and errors into account. An additional avenue
of research is how to apply our framework to physical systems that are not entirely phase-mixed, and
therefore not completely stationary.

The Gaia space telescope is currently surveying the parallaxes and proper motions of over a billion
stars, and is additionally determining radial velocities of tens of millions of stars [5]. Ground-
based spectroscopic surveys are set to deliver millions more high-precision radial velocities over the
coming years [15, 17, 8]. We thus will soon have access to precise six-dimensional phase-space
coordinates of tens of millions of stars throughout the Galaxy. The method that we present in this
paper provides a means of extracting the gravitational potential – and therefore the three-dimensional
distribution of baryonic and dark matter in the Galaxy – from these rich datasets, starting only
from minimal physical assumptions (steady-state dynamics in a background gravitational field that
corresponds to a positive matter density), and without resorting to restricted analytical models. This
method therefore has the potential to reveal the full, unseen mass distribution of the Galaxy, using
only a set of visible kinematic tracers – the stars.
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Broader Impact

This work will advance our understanding of the dynamics of the Milky Way, and has the potential
to uncover the distribution of both baryonic and dark matter throughout the Galaxy. The distribution
of dark matter within a large spiral galaxy, such as the Milky Way, is of great interest to astronomers,
particularly because it may help constrain models of the physical nature of dark matter. A great many
people in the broader public are passionate about astronomy, and any advances in our understanding
of the distribution of dark matter – and anything we learn about the nature of dark matter from its
spatial distribution – will interest them. The authors do not foresee broader ethical concerns arising
from this work.
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