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Preliminary, exemplary results for 3 real data sets that contain planets.

HSR: SM + OC

5. Results and outlook

• Very promising: HSR with
signal masking (SM)
looks better than PCA
both visually and in SNR

• Observing conditions (OC)
as additional predictors
improves results further.

• Note: SNR alone is not yet
sufficient to characterize
HCIpp algorithms; further
studies are necessary!4. Method |We run consistency checks to select the model for every pixel.
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3. Method | For each pixel, we train several models (see paper for details).
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2. Half-sibling regression

• HSR is a denoising
framework based on
causality proposed by
Schölkopf et al. (2016).

• The key idea is to exploit
confounding effects to
model systematic noise.

• Relevant: in physics, the
causal structure of data-
generating processes is
often well-understood. Therefore: Q ≃ Y - m(Xi) (up to a constant offset)

Assumption 1: Y = f(N) + Q (additive noise)

Assumption 2: Q ╨ Xi, N (causal independence)

In this case: m(Xi)→ f(N) (given enough data)
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1. Background: High-contrast imaging (HCI)

• In HCI, we record a “video” of a star and then
combine the frames to uncover any planets.

• Challenge: the star is much brighter than its
planets. Additionally, there is systematic noise
(“speckles”) that often mimics a planet signal.

• Therefore, the most crucial part of any HCI
post-processing pipeline is the denoising step.

•We try to improve this step by combining ML
with existing domain knowledge (e.g., known
symmetries in the data, temporal behavior, ...).

Proudly presented at the Machine
Learning and the Physical Sciences
workshop at NeurIPS 2020.
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