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Highlights

(A) 100-dimensional data model with known reference distribution evaluated with 107

MCMC samples. Direct 2D marginal posterior estimation using a masked autoregressive
flow ensemble (left panel) and representation of 2D Moment Network result (right panel)
both trained with 8×104 simulations.
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Posterior: 2D marginal flow
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• High-dimensional probability density estimation suffers from “curse of dimensionality”
• Propose direct estimation of lower-dimensional marginal posterior distributions
• Marginal flow: estimate joint-marginals of subsets of parameters
• Moment Networks: hierarchy of fast regression models compute increasing moments of

lower-dimensional marginal posterior density
• Beyond likelihood-free inference: can also efficiently solve known MCMC problems
• Demo: high-dimensional inference: a) MCMC reference, b) Gravitational wave data model

LIGO-like gravitational wave time series

Cosmological applications

Marginal flows Moment Networks

Markov chain Monte Carlo (MCMC) validation: 
see Figure A

(B) Example simulated 
gravitational wave time 
series signals for the 
strain “+” polarization h+ 
with realistic LIGO-like 
noise. 

(C) Left panel: Moment 
Network (MN) estimate of 
the 1-σ per strain 
parameter.

Right panel: For each of 
64 parameters (timestep), 
contours are marginal 
posterior σ from MN 
(shaded orange) and 
MCMC (dashed green).

• Full 𝑝(𝒙|𝜽) density estimation for data 𝒙 and
parameters 𝜽 intractable in high-dimension

• Make marginal densities the target of inference
• Estimate marginal posterior probability density for

pairs of parameters 𝛼, 𝛽 ∈ 𝜽 by minimizing
	−∑ log	𝑞(𝛼𝑖, 𝛽𝑖|𝒙𝑖) �

4 	
• Result 𝑞 is an estimate (e.g. with normalizing flow) of

marginal posterior 	𝑝 𝛼, 𝛽 𝒙 if training parameters 𝜽𝑖
drawn from prior 𝑝 𝜽 		and used to simulate 𝒙𝑖

• Fig. B: two example simulated gravitational wave time series. The simplified signals (dashed orange) are ∼0.12s
intervals from the 1 second before a binary black hole merger

• Fig. C left panel: Moment Network estimate of the marginal mean and variance for each time step parameter
• Fig. C right panel: validation case of similar complexity, but with known likelihood
• Trained Moment Network accurately matches long-run MCMC chain, which validates our approach

• Mapping the Universe: tractable simulation-based inference of high-dimensional cosmological fields & dark matter maps
• Robustness: Moment Networks use simpler architectures, reducing training failure risk and boosting inference speed
• Cross-validation: moments of estimated marginal posteriors should match those from Moment Networks
• Evading MCMC: Even when the likelihood can be sampled, marginal flows and Moment Networks still provide

advantages, as many of the drawbacks of high-dimensional MCMC can be simply avoided

• Side-step the posterior density estimation problem
• Estimate location, scale, and covariance (and possibly

higher-order moments) of marginal posteriors
• Network 𝐹 𝒙 minimizes L2 loss over distribution of

possible training examples 𝒙𝑖, 𝜽𝑖 	
𝐽0 = ∫ 𝜽 − 𝐹 𝒙 2	𝑝 𝒙, 𝜽 	d𝒙	d𝜽

• For observed data it forms a posterior mean estimate
𝐹 𝒙𝑜𝑏𝑠 = 𝜽 𝜃|𝒙𝑜𝑏𝑠

• Functions 𝐹	and 𝐺	can combine to output posterior
means, variances, and covariances for subsets of the
full set of parameters

𝐽1 = ∫ 𝜽 − 𝐹fixed 𝒙 2 − 𝐺(𝒙) 2	𝑝 𝒙, 𝜽 	d𝒙	d𝜽


