Continuous-Variable Quantum Generative Adversarial Networks for High Energy Physics Detector simulation

Su Yeon Chang^{1,2}, Sofia Vallecorsa¹, Elias F. Combarro³, Federico Carminati¹ ¹CERN, Geneva, Switzerland. ²EPFL, Lausanne, Switzerland. ³University of Oviedo, Oviedo, Spain

MOTIVATION

- Monte Carlo simulation is time consuming
- Generative Adversarial Networks (GAN) can replace this approach with high fidelity
- Development of quantum computing leads to extension of GAN \rightarrow Quantum GAN (qGAN)
- Best-known qubits-based qGAN model reproduces distributions over discrete variables [1]
- **AIM** : Develop qGAN to learn a distribution over continuous variables

CV QUANTUM COMPUTING

- Alternative approach (photonic quantum computing)
- information in continuous Encode physical observable (ex : Electromagnetic Field Strength)
- Fundamental information-carrying unit = qumode
- \rightarrow Expressed as a superposition of position basis $|x\rangle$ or Fock basis $|n\rangle$

$$|\psi\rangle = \int dx \,\psi(x)|x\rangle dx = \sum_{n=0}^{\infty} \langle n|x\rangle|n$$

CV NEURAL NETWORK

—		S(z_1)		D(α ₁)	Φ(φ ₁)
	$U_1(\theta_1, \phi_1, \phi_1)$	S(z_2)		D(α ₂)	Φ(φ ₂)
		S (z ₃)	Ο2(Ο2, ψ2, ψ2)	D(α ₃)	Φ(φ ₃) —
	J	S(z_4)		$- \left[D(\alpha_4) \right]$	Φ(φ ₄)
Int	erferomete	r Squeezi	ng Dis _l	placement	Kerr
\rightarrow (\mathcal{O}_1	$\rightarrow \Sigma$	ightarrow b		$\rightarrow \phi(x)$

$$L|\mathbf{x}\rangle \propto |\phi(W\mathbf{x} + \mathbf{b})\rangle$$

• CV neural network (CVNN) [2] performs the $|z \sim N|$ transformation equivalent to a fully connected 2) Hybrid \rightarrow Construct a fake image by measuring the position layer : $x \rightarrow \phi(Wx + b)$ expectation values $\langle x \rangle$ of all N quodes at the end W= Weight matrix, b = bias, of the generator & pass it to classical discriminator $\phi(x) =$ Non-linear activation Function

• Use singular value decomposition $W = O_2 \Sigma O_1$ $O_1, O_2 =$ orthogonal matrix, $\Sigma =$ diagonal matrix

CV CLASSIFIER

CVNN-based classifier to discriminate real images from random fake images

distribution along 1D Input data = energy calorimeter longitudinal direction (downsampled to 3 pixels)

Encoded as a displaced state

 $|\mathbf{x}\rangle = \bigotimes_{i=1}^{N} |x_i\rangle = \bigotimes_{i=1}^{N} D_i(x_i) |0\rangle$ \rightarrow Can correctly discriminate real and fake data

a

	Real	Fake
Real	100%	0%
Fake	3.6%	96.4%

Confusion matrix

Predicted

Real Images (Reduced size)

CV QUANTUM GAN

Propose two qGAN models					
Quantum	CVNN	generator	with	one	qumode
initialized by noise $z \sim N(0,1)$ (latent space =1)					
$ initial\rangle = z\rangle \otimes 0\rangle^{\otimes N-1} = D_0(z) 0\rangle \otimes 0\rangle^{\otimes N-1}$					
	4				

1) Fully Quantum

 \rightarrow Quantum generator (depth d_g) directly connected to quantum discriminator (depth d_d)

 \rightarrow Position expectation value $\langle x \rangle$ of qumode N at the end of discriminator = Predicted label

		No Measuren	nent	
$ 0\rangle^{\otimes N-1} \not=$ $(0,1)\rangle -$	Generator		Discriminator	$ \begin{array}{c} - \text{ Discard} \\ - \langle x \rangle \xrightarrow{\text{sigmoid}} \ell \end{array} $

off

GeV)

[1] C. Zoufal, A. Lucchi, and S. Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Information, 5(1):103, Nov 2019. [2] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N, Quesada, and S. Lloyd. Continuous-variable quantum neural networks. Phys. Rev. Research, 1:033063, Oct 2019.

computations, Increase number of qumodes, Regularization techniques,...)