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Abstract

Control of a particle accelerator relies on interpreting input diagnostics, and tuning
the accelerator settings to achieve desired diagnostic values. Particle accelerator
diagnostics can fail, slowly or abruptly, and currently a human operator is tasked
with evaluating this. For truly autonomous operation of particle accelerators, we
must be able to determine the reliability of a diagnostic using nothing more than
the set of all diagnostic data. We present a method of quantifying the scale of error
in diagnostic measurements based on gaussian process (GP) regression and the
intuition that each diagnostic measurement from a beam position monitor (BPM)
should be predictable given the set of all other BPM measurements.

1 Autonomous Accelerator Operation

Particle accelerator operation currently centers on a team of skilled human operators and some
automated routines for optimizing the accelerator’s operation against a set of performance metrics.
Accelerators produce a large amount of data, that data is of variable reliability, and the optimization
is typically multi-objective and spans a high-dimensional configuration space. This makes particle
accelerators an ideal candidate for applying machine learning techniques [2]. Autonomous control is
one of the key areas for progress for machine learning applications to particle accelerators [3].

There has been much progress in applying machine learning based optimization to accelerator
controls. Scheinker et al. [7] demonstrated the ability for model-independent control to adapt an
accelerator to deliver a certain longitudinal phase space in a free-electron laser linac based only on a
handful of control knobs and a diagnostic read-out. Duris et al. [1] have demonstrated that Bayesian
optimization with Gaussian process models can reach better optima faster than simplex models in
computer simulations of free electron lasers. Other recent work by Scheinker et al. [8] demonstrated
that a model-independent optimization algorithm can improve the average pulse energy in the LCLS
SASE FEL by automatically tuningsettings with no foreknowledge of free electron laser physics.

These applications all show the capability of machine learning techniques to tune an accelerator to
a desired operating point. However, they all involve human-in-the-loop operation – there are still
operators in the control room. For industrial applications such as water treatment – where there might
be two operators for ten accelerators, instead of ten operators for one – or for accelerators deployed
for space applications – where there would be no operators present – the control systems must be
truly autonomous. This means that the control system must be able to evaluate the reliability of
each diagnostic measurement using only the set of all diagnostic measurements. Particle accelerator
diagnostics can fail for numerous reasons, and either catastrophically or slowly, and any autonomous
accelerator control system must be able to detect these and distinguish them.

In this paper we present a concept for determining the reliability of a set of beam position monitor
(BPM) measurements using diagnostic self-consistency. In an ideal system with no errors, the BPM
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measurements should be highly correlated. If the measurements have some noise on top of them, then
a predictive model that captures uncertainty should have the scale of that uncertainty be proportional
to the level of noise on the measurements. We can therefore use the predictive uncertainty of a model
fit to the BPM data to determine the scale of that uncertainty with no outside input.

2 Diagnostic Self-Consistency

Consider a set of diagnostic measurements {Xi}. In many cases, there are physical reasons to believe
that these measurements are correlated. For our case, where we analyze BPMs, beam dynamics
suggests that the BPM measurements are very strongly correlated due to the existence of an underlying
transfer map that relates the beam phase space coordinates at each BPM to each other. Given enough
BPMs, we should be able to reconstruct that map in a model that allows us to predict the value
measured at one BPM given all the values at the other BPMs. We refer to this as the existence of
diagnostic self-consistency.

Formally, we expect that for each Xα measurement, given the set of inputs {Xi 6=α}, there should be
a function Xα = fα({Xi 6=α}) in an ideal case with perfect diagnostic reliability for each i. In the
case that fα exists and is perfectly accurate for each α then we have diagnostic self-consistency.

In reality, the diagnostics will have some noise in their readings, due to electronic noise, resolution
limits, etc. Thus, each Xα will have some best fit model fα which has some uncertainty in the
prediction. By quantifying that uncertainty, we can extract the uncertainty in each diagnostic
measurement and ascertain the variance in a diagnostic’s measurement using only the set of all
diagnostic measurements.

Because we are fitting the relation between ∼ 10s of diagnostics, and need to have a variance in
those predictions, we will use gaussian process (GP) regression [6] to compute the correlation. GP
regression has already been used effectively for optimization [1] as well as in building physics-based
models for improved optimization [5].

3 The ATR Beamline: A Test Case

To generate test data, we use MAD-X simulations of the ATR beamline at Brookhaven National
Laboratory, fig. (1). The ATR beamline is used to extract beam from the Alternating Gradient
Synchrotron and transport it to the Relativistic Heavy Ion Collider. This beamline has a number of
vertical and horizontal bends, and a number of correctors and BPMs along the line.

Figure 1: Lattice layout and Twiss parameters for the ATR beamline.

For what follows, we generated a dataset of 500 different beams with randomly offset initial positions
and angles to the ideal axis. To compute the fα for each BPM, we train the GP models using a
training set of 400 randomly selected beams, with the additional 100 held out as a test set, which we
will use to infer the error in the models.
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3.1 Baseline – Ideal Diagnostics

To test if we are able to achieve diagnostic self-consistency with the ATR beamline, we begin with
simulation data with no noise on the beamline. For our self-consistency model we used a polynomial
kernel with degree 1 for gaussian process regression using GPflow [4] (version 2.0.5). Because the
underlying physics can be described exactly by a matrix transform, it is sensible that a linear kernel
would perform best.

In this case, we find that BPMs 0, 14, and 22 do not give reliable fits, with BPM 0 having the worst
fitting. We show some examples in fig. (2) – BPMs other than 0, 14, and 22 have the same ideal
predictions as those shown in figs. (2b, 2c).

(a) BPM 0 (b) BPM 6

(c) BPM 16 (d) BPM 22

Figure 2: Example comparisons of test set data (red) versus predictions with uncertainty (black).

We can therefore conclude that we can achieve diagnostic consistency with some subset of the BPMs.
In testing, we have found that the first BPM in a sequence, regardless of how many BPMs we have
available, always has this poor level of fitting. This is likely due to insufficient information upstream
of the first BPM. The error in BPMs 14 and 22, is likely related to the coupling in the horizontal and
vertical motion introduced in the W line. In all cases, we can identify these BPMs where diagnostic
consistency does not occur in simulation data.

3.2 Gaussian noise on diagnostic data

We then tested our approach to diagnostic consistency by adding Gaussian noise to each of the 23
BPM measurements. Here each BPM is assigned a random σ that represents the variance in the noise
level. Thus, each BPM has a different scale of noise. We then train each BPM’s fα with this noisy
data, and compare the predictions to the test set values as before.

Once noise is introduced, the model fα is no long a perfect predictor of test data, compare figs. (3b,
3c) to figs. (2b, 2c). However, for the fα other than BPMs 0, 14, and 22, the test data points are still
within the error predictions from the GP model. We will use the errors in the predictions of the test
data as a proxy for estimating the uncertainty in the individual BPMs.
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(a) BPM 0 (b) BPM 6

(c) BPM 16 (d) BPM 22

Figure 3: Example comparisons of test set data (red) versus predictions with uncertainty (black) with
noise in the data.

Figure 4: Variance in the GP model test set predictions versus the noise σ applied to the dataset.

3.3 Relation of measurement noise to gaussian process model errors

We can now compare the σ of the noise we applied to each BPM with the RMS errors in prediction
for each BPM’s GP model applied to a test dataset

εα =

√∑
i

(
fα(Xi)− Yi

)2
(1)

εα can be computed from existing data with no reference to the level of noise. As we see in fig. (4),
there is a linear relationship between σ and ε, with the problem BPMs 0, 14, and 22 identified in the
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baseline case studied above as the outliers. This relationship, combined with the ability to identify
problem diagnostics using ideal simulation data, suggests that this technique can be used to infer the
uncertainty of a given BPM’s measurements using only the BPM data itself.

4 Conclusion and Outlook

We have presented a technique for inferring the uncertainty in a diagnostic’s measurement using
gaussian process regression and an assumption of diagnostic self-consistency. We tested this technique
using simulations of the ATR beamline BPMs, which showed that diagnostic self-consistency is not
uniform across all BPMs in a beamline. When we then added noise to the BPM data and found that,
except for the problem BPMs identified in the ideal dataset, the RMS error on a holdout dataset can
be accurately predicted for almost all of the BPMs. Although we do not yet understand the particular
failures for the handful of BPMs that do not perform well in computing a self-consistency fit, we
can detect them clearly in ideal simulations, and therefore can choose to exclude them in practical
applications. Two key developments remain for this work: (1) an application to rings rather than
linacs, where there is a periodicity in the diagnostics and no “first BPM” and (2) using the computed
diagnostic uncertainty in optimization routines for the accelerator, in such a way that a diagnostic
that is unreliable is given less weight in tuning than a more reliable diagnostic, but in a smooth way.

Broader Impact

Autonomous operation of particle accelerators would open up a variety of applications, ranging from
medical accelerators for cancer therapy to high power electron linacs for water treatment facilities to
accelerator-based experiments in space. Safely operating such an accelerator in a fully autonomous
mode, with minimal input from human operators, requires that the autonomous control system be able
to evaluate the accuracy of the diagnostic inputs the system is tuning against. This work represents
the first steps towards quantifying diagnostic reliability using only the set of available diagnostic
measurements, without any external information supplied.
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