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Abstract

Gravitational wave detectors such as LIGO and Virgo are susceptible to various
types of instrumental and environmental disturbances known as glitches which can
mask and mimic gravitational waves. While there are 22 classes of non-Gaussian
noise gradients currently identified, the number of classes is likely to increase as
these detectors go through commissioning between observation runs. Since identi-
fication and labelling new noise gradients can be arduous and time-consuming, we
propose β-Annelead VAEs to learn representations from spectograms in an unsu-
pervised way. Using the same formulation as [1], we view Bottleneck-VAEs [2]
through the lens of information theory and connect them to β-VAEs [3]. Motivated
by this connection, we propose an annealing schedule for the hyperparameter β in
β-VAEs which has advantages of: 1) One fewer hyperparameter to tune, 2) Better
reconstruction quality, while producing similar levels of disentanglement.

1 Introduction

Gravitational waves are a cosmic phenomenon that are a result of the collision of highly dense
objects. Study of gravitational waves has become possible with ultra sensitive instruments such as the
Laser Interferometer Gravitational-Wave Observatory (LIGO) [4] and Virgo [5]. These detectors can
detect changes in length caused by gravitational waves less than the width of a proton [6]. Naturally,
these hyper sensitive instruments are prone to instrumental and environmental disturbances such
as non Gaussian transients known as glitches which can mimic gravitational waves. The frequency
of occurrence of these glitches is so high that the chance of these glitches masking a gravitational
wave is non-negligible [7]. It is important to identify these glitches and eliminate them for proper
gravitational wave detection. Project Gravity Spy [8] is an effort to identify and categorize these
glitches into different classes based on the morphology of spectrograms with help from citizen
scientists. While these glitches can be categorized into 22 classes currently, there is a possibility that
new classes of glitches might get added in the future as the detectors undergo commissioning before
each observation run [9, 10].

There have been previous attempts [11, 12, 13] to classify glitches using supervised deep learning
techniques, but in this work we take an unsupervised representation learning approach. Unsupervised
representation learning can help alleviate the need for a large amount of labelled data and the
need to identify new classes of glitches as they appear during the operation of LIGO. Disentangled
representation learning, as a branch of unsupervised representation learning, has several advantages,
as pointed out in [14]: invariance, transferability, interpretability, and conditioning and intervention.
A large portion of recent literature on disentanglement learning is based on Variational Autoencoders
(VAEs). Higgins et al. [3] introduce β-VAEs, which penalizes the KL divergence between the
variational posterior and the prior using the hyperparameter β. Bottleneck-VAEs [2] increase the
capacity of the information bottleneck as the training progresses thus offering better reconstructions
than β-VAEs. In this work, we show that Bottleneck-VAEs and β-VAEs are closely connected and
propose a decreasing schedule for the hyperparameter β in β-VAEs that controls the information
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Figure 1: (Left) Training Bottleneck VAEs with different values of C equal to Rate Rm1 , Rm2 , Rm3 (with
γ = 1) corresponds to VAEs converging to points corresponding to Distortion equal to Dm1 , Dm2 , Dm3 in the
RD-curve. ELBO (Center) and reconstruction error (Right) for different hyperparameters in Bottleneck and
Proposed VAEs on dSpirtes.

capacity similar to the hyperparameter C in the objective function of Bottleneck-VAEs. In addition,
we provide experimental evidence on Gravity Spy dataset to show superior performance of our
proposed VAE in unsupervised learning of glitches and advantages of using our proposed VAE when
compared to Bottleneck-VAEs.

2 VAE, β-VAE and Bottleneck-VAE

The generative model of our data is defined as p(x|z)p(z) = p(x, z) where each observed datapoint
x is assumed to be generated from its own latent variable z. VAEs attempt to maximize the marginal
likelihood of the data:

log pθ(x1, ...,xN ) =

N∑
i=1

log pθ(xi).

Due to its intractability, a variational distribution qφ is introduced to approximate the posterior p(z|x),
which gives rise to the lower bound on the marginal likelihood called the Evidence Lower Bound
(ELBO):

L(θ, φ;x, z) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)). (1)

The integration in the first term is usually computed using samples from qφ(z|x) and backpropogation
through the sampling process is done through the reparametrization trick [15]. In practice, qφ(z|x)
is assumed to be a Gaussian distribution with diagonal covariance and p(z) to be N (0, I).

β-VAEs [3] are variants of regular VAEs that introduce a hyperparameter called β to the ELBO:

Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)||p(z)). (2)

For β > 1, qφ(z|x) is heavily constrained to be closer to the factorized prior p(z). Heavy penalty on
the DKL encourages disentanglement, while at the same time leads to poor reconstruction quality.
This is due to the fact that the latent factors are not able to encode enough information about the
observations.

Burgess et al. [2] proposed an alternate objective with an additional hyperparameter C; we call this
variant of VAE as Bottleneck-VAE:

Eqφ(z|x)[log pθ(x|z)]− γ|DKL(qφ(z|x)||p(z))− C|. (3)

When C = 0, the objective is the same as β-VAE, since DKL ≥ 0. In Bottleneck-VAEs, C is
progressively increased during training (with γ kept constant, typically greater than one) to increase
the amount of information stored about observations in the latent codes. This results in two effects:
1) As the information capacity is increased (through C) during training, the encoder learns to encode
latent dimensions in the order of decreasing returns to log-likelihood. 2) This controlled capacity
increase also encourages better reconstruction quality compared to β-VAEs, while achieving similar
levels of disentanglement.
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Figure 2: KL-divergence of each latent dimension with respect to a unit
Gaussian during training on dSprites. Left: In β-Annealed VAE, β is de-
creased as the training progresses Right: In Bottleneck-VAE, C is increased
as the training progresses to increase the information capacity

Table 1: Results on unsuper-
vised representation learning of
non Gaussian noise transients
that occur in gravitational wave
detectors

Model Accuracy
β-VAE 61.26%

Bottleneck-VAE 80.01%
Proposed-VAE 81.60%

3 β-Annealed VAE

It is important to note that the objective functions corresponding to β-VAEs and Bottleneck-VAEs
do not optimize the ELBO when β > 1 and γ > 1, C > 0, respectively. [1] offers an information
theoretic perspective, in that β-VAEs try to find the optimal distortion (D) and rate (R) for a fixed
β = ∂D

∂R by minimizing minqφ(z|x),p(z),pθ(x|z)D+ βR, where D = −Ep(x)[Eqφ(z|x)[log pθ(x|z)]]
and R = Ep(x)[DKL(qφ(z|x)||p(z))]. The inequality H − D ≤ I(X;Z) ≤ R from [1] shows
the relationship between D, R, data entropy H (−Ep(x)[log p(x)]) and mutual information I
(DKL(p(x, z)||p(x)p(z))). For a finite capacity encoder qφ(z|x) and decoder pθ(x|z), vanilla
VAEs correspond to an operating point on the green curve (in Figure.1) with slope 1. Fixing the
capacity of the encoder and decoder, if β is varied from greater than 1 to less than 1, the operating
point shifts from ↑ D, ↓ R to ↓ D, ↑ R along the green curve (with ↑ & ↓ denoting high and low
respectively).

We first view Bottleneck-VAE from an information theoretic standpoint. If we set γ = 1 and a
constant C = Rm, optimizing (3) can be viewed as minimizing D for a constant R = Rm. From
Figure 1, we can see that this corresponds to a point on the RD curve where R = Rm. For different
increasing values of C, the point shifts to locations in the RD curve corresponding to increasing
R. Concretely, increasing C corresponds to relaxing the constraint that qφ(z|x) needs to be closer
in terms of KL-divergence to the prior p(z)), and [2] showed that when γ > 1, this leads to better
robust disentanglement and better reconstruction quality.

Since any point on the RD-curve for a fixed encoder and decoder is reachable through β, controllable
information capacity can be achieved through β. Motivated by the monotonically increasing schedule
of C in case of Bottleneck-VAEs, we propose a monotonically decreasing schedule of β for β-VAEs.
The effect on distortion and rate while decreasing β in case of β-VAEs is very similar to the effect
of increasing C in Bottleneck-VAEs. We formalize our claim in the following lemma (Proof in
Appendix),

Lemma 3.1 (For a fixed finite capacity encoder and decoder) Let D∗C1
, D∗C2

and R∗C1
, R∗C2

denote
the optimal distortion and rate for a Bottleneck-VAE with C1, C2 respectively with a constant γ ≥ 0.
Similarly let D∗β1

, D∗β2
and R∗β1

, R∗β2
denote the optimal distortion and rate for a β-VAE with β1, β2

respectively. If C1 > C2 ≥ 0, then R∗C1
> R∗C2

and D∗C1
< D∗C2

. Similarly, with respect to β-VAEs,
if 0 ≤ β1 < β2, then R∗β1

> R∗β2
and D∗β1

< D∗β2
.

If we want to replicate similar effects of linearly increasing C in the case of Bottleneck-VAEs, a
β-VAE can be trained with monotonically decreasing β from β � 1 to β � 1. We use linearly
decreasing schedule for β in all of our experiments. When compared to Bottleneck-VAEs, a linearly
decreasing schedule of β in β-VAEs (which we call β-Annealed VAEs) offers advantages such as:
1) without having to set C, our proposed schedule have one less hyperparameter to tune; 2) in all
of our experiments, we linearly decreasing β from β � 1 to β = 1 during training, which can be
interpreted as β-VAEs are trained as vanilla VAEs during later stages in training leading to better
reconstruction error.
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Table 2: Quantitative assessment of disentanglement in dSprites

VAE HYPERPARAMETER BETAVAE FACTORVAE MIG DCI MODULARITY SAP
VARIANT SCORE SCORE DISENTANGLEMENT

β-VAE [3]
β=1 0.851 0.685 0.072 0.127 0.790 0.052
β=4 0.816 0.627 0.078 0.138 0.800 0.028
β=16 0.742 0.546 0.141 0.277 0.809 0.010

BOTTLENECK-VAE [2]
C=5 0.868 0.596 0.334 0.402 0.791 0.078
C=25 0.765 0.539 0.025 0.059 0.769 0.022
C=100 0.625 0.369 0.014 0.022 0.746 0.007

FACTOR-VAE [16]
γ=10 0.862 0.706 0.144 0.221 0.781 0.068
γ=30 0.878 0.849 0.190 0.328 0.796 0.068
γ=100 0.862 0.792 0.312 0.461 0.820 0.062

β-TCVAE [17]
β=1 0.851 0.685 0.072 0.127 0.790 0.052
β=4 0.875 0.830 0.226 0.347 0.805 0.064
β=10 0.879 0.808 0.287 0.447 0.818 0.067

DIP-VAE-I [14]
λod=1 0.846 0.645 0.094 0.127 0.779 0.053
λod=5 0.804 0.574 0.040 0.077 0.783 0.025
λod=50 0.783 0.599 0.034 0.077 0.778 0.016

DIP-VAE-II [14]
λod=1 0.720 0.479 0.015 0.083 0.782 0.004
λod=5 0.793 0.644 0.049 0.108 0.798 0.016
λod=50 0.869 0.544 0.087 0.177 0.809 0.058

PROPOSED VAE
β=5 0.846 0.809 0.073 0.180 0.815 0.038
β=25 0.739 0.599 0.111 0.233 0.790 0.034
β=50 0.902 0.805 0.289 0.397 0.832 0.076

4 Results

We perform experiments to indicate β-Annealed VAEs behave similarly to Bottleneck-VAEs when
the information capacity is increased. Then we compare β-Annealed VAEs and Bottleneck-VAEs in
terms of ELBO, reconstruction error and disentanglement on the dSprites [18] (qualitative assessment
of disentanglement can be found in Appendix).

We first show that the two effects of linearly increasing C in Bottleneck-VAEs (with γ > 1 kept
constant) can be achieved using linearly decreasing β in β-VAEs. We use the same architecture of
encoder and decoder used in [2] and trained a β-VAE with linearly decreasing β from 100 to 1 (with
iteration threshold being 100000). Figure 2 shows the DKL of each latent dimension q(z|x) to its
prior (standard normal distribution), we see that the generative factors are learned one at a time by
the network in the order of decreasing returns to the log-likelihood, similar to Bottleneck-VAEs. To
show that β-Annealed VAEs achieve better reconstruction error because they are trained as vanilla
VAEs during the later stages of training (i.e after β is reduced to 1), we perform experiments with
different values of β and C, and Figure 1 (right) shows the reconstruction error on dSpirtes for
Bottleneck-VAEs and β-VAEs. We see that our proposed linearly decreasing schedule of β offers
better reconstruction error than Bottleneck-VAEs. Figure 1 (center) also shows that β-Annealed
VAEs achieve better ELBO than Bottleneck-VAEs. To quantitatively assess disentanglement offered
by our proposed linear decreasing schedule of β in β-VAEs, we used the metrics β-VAE metric [3],
Factor VAE metric [16], Mutual Information Gap (MIG) [17], Modularity [19], DCI Disentanglement
[20] and SAP score [14], similar to [21]. We show the disentanglement performance of the proposed
method with the following existing variants of VAEs: 1) β-VAE, 2) FactorVAE, 3) TCVAE, 4)DIP-
VAE-I, 5)DIP-VAE-II, 6) Bottleneck-VAE in Table 2.

Further, we train β-VAE, Bottleneck-VAE and β-Annealed VAE on the Gravity Spy [22] dataset,
which contains spectrogram samples of 22 different types of glitches. We check the quality of
representations learnt by the encoders by training linear classifiers trained on top of latent representa-
tions and their performance are as shown in Table 1. We see that our proposed VAE learns better
representations when compared to β-VAEs and Bottleneck-VAEs.

5 Conclusion

We introduce β-Annealed VAEs motivated by viewing Bottlenck-VAEs through the lens of informa-
tion theory. We show that our proposed version of β-VAEs, with linearly decreasing β as the training
progresses, offers similar robust disentanglement while having better reconstruction error. We prove
its efficacy in learning representations of glitches in LIGO / Virgo detectors.
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6 Broader Impact

Beyond unsupervised representation learning of glitches in gravitational wave detectors, β-Annealed
VAEs can be used in applications requiring disentanglement of generative factors of data. Since our
proposed VAEs have lower reconstruction errors, they can be used in applications where sample
quality is important. We believe this work could encourage the ML community to delve into
unsupervised learning techniques for the detection and study of glitches. We see research opportunities
in devising specific types of VAEs after closely studying the characteristics of glitches and developing
a standard benchmark to test different models.
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A Qualitative assessment

Figure 3: First two rows: Original data and their reconstructions Other rows: all 10 latent dimension traversals
with captured attribute indicated in the sides. Greyed out rows indicate dead dimensions.

Figure 4: Latent traversals of different latent dimensions on 3DChairs dataset with traversals in the range [-2, 2]
using β-Annealed VAEs with β = 50
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B Proofs

Lemma B.1 (For a fixed finite capacity encoder and decoder) Let D∗C1
, D∗C2

and R∗C1
, R∗C2

denote
the optimal distortion and rate for a Bottleneck-VAE with C1, C2 respectively with a constant γ ≥ 0.
Similarly let D∗β1

, D∗β2
and R∗β1

, R∗β2
denote the optimal distortion and rate for a β-VAE with β1, β2

respectively. If C1 > C2 ≥ 0, then R∗C1
> R∗C2

and D∗C1
< D∗C2

, similarly with respect to β-VAEs,
if 0 ≤ β1 < β2, then R∗β1

> R∗β2
and D∗β1

< D∗β2

Proof. From the objective function of Bottleneck-VAEs,

min
qφ(z|x),p(z),p(x|z)

D + γ|R− C|

one can see that the optimal values for R, when C = C1 is R∗C1
= C1 (similarly, when C = C2,

R∗C2
= C2). If C1 > C2 then R∗C1

> R∗C2
. Also,

H −D∗C2
≤ R∗C2

< R∗C1

H −D∗C2
< H −D∗C1

D∗C1
< D∗C2

For β-VAEs, if β1 < β2, then R∗β1
> R∗β2

and D∗β1
< D∗β2

is a direct result from [1]. β-VAEs with a
fixed architecture and finite capacity can be used to interpolate between auto-encoding behaviour
(↑ D, ↓ R) to auto-decoding (↓ D, ↑ R) behaviour by changing from β << 1 to β >> 1.
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