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Abstract

The information bottleneck (IB) method of Tishby, Pereira and Bialek formalizes
the notion of extracting relevant information from data. While the IB method
offers a precise and appealing framework for understanding learning phenomena,
it is analytically intractable in general. Here we derive a perturbation theory for
the IB method and analyze the learning onset – the limit of maximum relevant
information per each bit, extracted from data. We test our results on a synthetic
probability distribution, finding good agreement with the exact solution near the
onset of learning. Our work also provides a fresh perspective on the intimate
relation between the IB method and the strong data processing inequality.

1 Information Bottleneck

Extracting relevant information from data is crucial for all forms of learning. Animals are very
adept at isolating biologically useful information from complicated real-world sensory stimuli: for
example, we instinctively ignore pixel-level noise when looking for a face in a photo. A failure to
disregard irrelevant bits could lead to suboptimal generalization performance especially when the
data contains spurious correlations. For instance, an image classifier that relies on background texture
to identify objects is likely to fail when presented with a new image showing an object in an ‘unusual’
background (see, e.g., Refs. [7, 20]). Understanding the principles behind the identification and
extraction of relevant bits is therefore of fundamental and practical importance.

Formalizing this aspect of learning, the information bottleneck (IB) method provides a precise notion
of relevance with respect to a prediction target: the relevant information in a source (X) is the bits that
carry information about the target (Y ) [17]. The relevant bits in X are summarized in a representation
(Z) via a stochastic map defined by an encoder q(z|x), obeying the Markov constraint Z↔X↔Y .
In general a trade-off exists between the amount of discarded information (compression) and the
remaining relevant information in Z (prediction), thus motivating the IB cost function,

L[q(z|x)] = I(Z;X)− βI(Z;Y ), (1)

where β>0 denotes the trade-off parameter and I(A;B) the mutual information. The first term favors
succinct representations whereas the second encourages predictive ones. The IB loss is minimized by
the representations that are most predictive of Y at fixed compression, parametrized by the Lagrange
multiplier β (see, Fig. 1a).

The IB method offers a highly versatile framework with wide-ranging applications, including neu-
ral coding [10], evolutionary population dynamics [13], clustering [16], deep learning [1–3] and
reinforcement learning [8]. However the nonlinearity of the IB problem makes it computationally
expensive and difficult to analyze, barring a few special cases [5]. This necessitates an investigation
of tractable methods for solving the IB problem. The use of variational approximations to reduce the
computational cost has paved the way for a massive scale-up of the IB method [3]. Complementing
this approach, we report a new analytical result for the IB problem in the tractable limits.
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Figure 1: Information bottleneck & Learning onset. (a) The IB frontier (solid) is parametrized by
the trade-off parameter β whose inverse is the slope of this curve. The relevant information is bounded
from above by the data processing inequality (DPI) and its tight version, the strong data processing
inequality (SDPI) [Eq. (2)] which touches the IB curve at the origin. The slope at the origin is equal
to the inverse critical trade-off parameter β−1c which marks the learning onset (circles in (b-d)). (b-d)
Our controlled expansions vs the exact solution for PX,Y shown in (e) [see legend in (a)]. We obtain
the SDPI and the perturbation theory results from Eqs. (13-15) & (21). All information is in bits.

2 Learning Onset

Although the IB loss in Eq. (1) encourages a representation to encode every relevant bit in X when
β →∞,1 the optimal representation needs not contain any relevant information at finite β. To see
this, we note that the loss vanishes for any uninformative representation I(Z;X) = I(Z;Y ) = 0,
and thus an informative representation yields a lower loss only when the relevant information in
Z is adequately large I(Z;Y ) > β−1I(Z;X) (which makes the loss negative). But the relevant
information is also bounded from above by the data processing inequality (DPI), I(Z;Y ) ≤ I(Z;X),
resulting from the the Markov constraint Z↔X↔Y [6] (see, Fig. 1a). Combining these inequalities
yields β−1I(Z;X) < I(Z;Y ) ≤ I(Z;X) which cannot be met when β−1 > 1. Hence the existence
of an informative IB minimizer requires β−1 ≤ 1. Indeed for any PX,Y with I(X;Y ) > 0, there
exists a critical trade-off parameter βc(X → Y ) ≥ 1 that marks the learning onset, separating two
qualitatively distinct regimes: uninformative regime at β < βc and informative regime at β > βc.

The learning onset is not only a special limit in the IB problem but also physically and practically
relevant. It corresponds to the region where the relevant information per encoded bit is greatest
and thus places a tight bound on the thermodynamic efficiency of predictive systems [14, 15]. The
(inverse) critical trade-off parameter is also a useful measure of correlation between two random
variables [9]. Finally estimating the upper bound of βc might help weed out non-viable values of
hyperparameters in deep learning techniques such as the variational information bottleneck [18, 19].

The strong data processing inequality. We can improve the bound on βc with the tight version of
the DPI, the strong data processing inequality (SDPI) [4, 11, 12] (see, Fig. 1a)

I(Z;Y ) ≤ ηKL(X → Y )I(Z;X) with ηKL(X → Y ) ≡ sup
RX 6=PX

DKL(RY ||PY )

DKL(RX ||PX)
, (2)

where ηKL(X → Y ) is the contraction coefficient for the Kullback-Leibler divergence. Here PX and
PY denote the probability distributions of X and Y . The supremum is over all allowed distributions
given the space of X , and RY is related to RX via the channel PY |X . Replacing the DPI with the
SDPI in the first paragraph of this section, we obtain

βc(X → Y ) ≥ ηKL(X → Y )−1. (3)

In the following section we show that the equality holds, as expected (since the SDPI is tight).2

1The compression term, while infinitesimally small in this limit, still penalises irrelevant information and
prefers a representation Z that is the minimal sufficient statistics of X for Y .

2In general ηKL(X → Y ) and βc(X → Y ) are asymmetric in X and Y .
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3 Perturbation theory

Our theory is based on a controlled expansion around the critical trade-off parameter βc and some
uninformative encoder q0(z|x) = q0(z),

q(z|x) = q0(z|x) + εq1(z|x) + ε2q2(z|x) + . . . (4)

I(Z;X) = εI
(1)
Z;X [q1] + ε2I

(2)
Z;X [q1, q2] + . . . , (5)

where ε ≡ β − βc → 0+ and
∑

z qn(z|x) = δn,0 to ensure normalization. Note that I(0)Z;X vanishes
for uninformative q0. The first and second-order informations read

I
(1)
Z;X [q1] =

∑
x
p(x)

∑
z∈Z1

q1(z|x) ln
q1(z|x)
q1(z)

(6)

I
(2)
Z;X [q1, q2] =

∑
x
p(x)

(∑
z∈Z0

q1(z|x)2 − q1(z)2

2q0(z)

+
∑

z∈Z1

q2(z|x) ln
q1(z|x)
q1(z)

+
∑

z∈Z2

q2(z|x) ln
q2(z|x)
q2(z)

)
, (7)

where Z0 = supp(q0) and Zn = supp(qn) \
⋃n−1

i=0 Zi (i.e., Zn contains representation classes or
space that first appear in the support of the nth-order encoder).3 The expansions for q(z) and q(z|y)
take the same form as Eq. (4), and the expressions for I(Z;Y ) are given by Eqs. (5-7) but with Y
replacing X everywhere. Finally we write down the loss function as a power series in ε,

L[q(z|x)] = εL(1)[q1] + ε2L(2)[q1, q2] + . . . , (8)

where

L(1)[q1] = I
(1)
Z;X [q1]− βcI(1)Z;Y [q1] (9)

L(2)[q1, q2] = I
(2)
Z;X [q1, q2]− βcI(2)Z;Y [q1, q2]− I

(1)
Z;Y [q1]. (10)

First-order theory. Minimizing the first-order loss yields4

minL(1) = L(1)[q∗1 ] = 0 with
q∗1(z|x)
q∗1(z)

= exp

(
βc
∑

y
p(y|x) ln q

∗
1(z|y)
q∗1(z)

)
for z ∈ Z1. (11)

As the ratio q1(z|x)/q1(z) does not depend on z, we eliminate the superfluous dependence on z by
defining5

r(x) ≡ q1(z|x)p(x)
q1(z)

for z ∈ Z1, and r(y) =
∑

x
p(y|x)r(x). (12)

Substituting Eqs. (12) in (6) & (11), we obtain

I
(1)
Z;X = DKL[r(x)||p(x)]

∑
z∈Z1

q1(z), I
(1)
Z;Y = DKL[r(y)||p(y)]

∑
z∈Z1

q1(z) (13)

r(x) = p(x) exp (−βc(DKL[p(y|x)||r(y)]−DKL[p(y|x)||p(y)])) . (14)

Since the first-order loss vanishes [Eq. (11)], we have I(1)Z;X [q∗1 ]− βcI
(1)
Z;Y [q

∗
1 ] = 0 and thus

βc =
DKL[r(x)||p(x)]
DKL[r(y)||p(y)]

. (15)

Note that an uninformative solution r(x) = p(x) always satisfies Eq. (14) and we must seek a
nontrivial solution r(x) 6= p(x).

3Our theory generalizes the expansions in Refs. [18, 19] which considered the case Z1 = Z2 = ∅.
4 Unlike in the original IB problem, here the optimization is unconstrained since the normalization∑
z q1(z|x) = 0 sums over both Z0 and Z1, and only the latter enters our first-order theory.
5Both r(x) and r(y) are non-negative and normalized:

∑
x r(x) =

∑
y r(y) = 1.
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We now show that the critical trade-off parameter is the inverse contraction coefficient. First we
note that r(x) in Eq. (14) is a solution to a different optimization, described by a loss function
L[f ] = DKL[f(x)||p(x)]− βc DKL[f(y)||p(y)]. That is, δL/δf |f→r = 0 and minL = L[r] = 0. It
follows immediately that δ(DKL[f(y)||p(y)]

DKL[f(x)||p(x)] )/δf |f→r = 0 for DKL[r(x)||p(x)] > 0, therefore

β−1c =
DKL[r(y)||p(y)]
DKL[r(x)||p(x)]

= sup
f 6=p

DKL[f(y)||p(y)]
DKL[f(x)||p(x)]

= ηKL(X → Y ). (16)

While our first-order theory provides a method for identifying the critical trade-off parameter by
solving Eqs. (14) & (15), it is incomplete. The optimal encoder in Eq. (11) is determined up to a
multiplicative factor. Consequently the informations in Eq. (13) still depend on q1(z) which can take
any positive value. This scale invariance is unphysical and is broken in the second-order theory.

Second-order theory. From Eqs. (7) & (10), we write down the second-order loss

L(2)[q1, q2] =
∑

z∈Z0

∑
x,x′ q1(z|x)K(x, x′)q1(z|x′)

2q0(z)
− I(1)Z;Y [q1] (17a)

+
∑

x
p(x)

∑
z∈Z1

q2(z|x)
(
ln
q1(z|x)
q1(z)

− βc
∑

y
p(y|x) ln q1(z|y)

q1(z)

)
(17b)

+
∑

x
p(x)

∑
z∈Z2

q2(z|x)
(
ln
q2(z|x)
q2(z)

− βc
∑

y
p(y|x) ln q2(z|y)

q2(z)

)
(17c)

where K(x, x′) ≡ δ(x, x′)p(x) + (βc − 1)p(x)p(x′)− βc
∑

y p(y)p(x|y)p(x′|y). Optimizing L(2)

with respect to q2 (for Z1 and Z2 separately) results in stationary conditions, which equate the terms
in the parentheses of Eqs. (17b) & (17c) to zero.6 Eliminating I(1)Z;Y with Eq. (13), we have

L(2)[q1] = −DKL[r(y)||p(y)]
∑

z∈Z1

q∗1(z) +
∑

z∈Z0

∑
x,x′ q1(z|x)K(x, x′)q1(z|x′)

2q0(z)
. (18)

Minimizing this loss with respect to q1 and subject to the normalization
∑

z q1(z|x) = 0 gives∑
x′
K(x, x′)

q∗1(z|x′)
q0(z)

= −
(∑

z′∈Z1

q1(z
′)
)∑

x′
K(x, x′)

r(x′)

p(x′)
for z ∈ Z0. (19)

Substituting the above in Eq. (18) yields

L(2)[q∗1 ] = −DKL[r(y)||p(y)]
∑
z∈Z1

q1(z) +
1

2

∑
x,x′

r(x)K(x, x′)r(x′)

p(x)p(x′)

(∑
z∈Z1

q1(z)

)2

. (20)

The final minimization with respect to
∑

z∈Z1
q1(z) results in

minL(2) = − 1

2κ
DKL[r(y)||p(y)]2 and

∑
z∈Z1

q∗1(z) =
1

κ
DKL[r(y)||p(y)], (21)

where κ =
∑

x,x′
r(x)K(x,x′)r(x′)

p(x)p(x′) > 0. These results break the scale invariance in our first-order
theory [Eq. (11)] and fix the leading corrections to mutual information in Eq. (13).

In Fig. 1 we demonstrate that our theory [Eqs. (13-15) & (21)] correctly predicts the critical trade-off
parameter and captures the behaviors of the mutual information and IB loss in the vicinity of the
learning onset for a synthetic joint distribution (shown in Fig. 1e).

4 Outlook

We derive a perturbation theory for the IB problem and offer a glimpse of the intimate connections
between the learning onset and the strong data processing inequality. In future works we aim to
build on our results to develop an algorithm for estimating the contraction coefficient from samples
and explore novel methods for solving the IB problem in this limit. It would be interesting to
further leverage the wealth of rigorous results from the literature on hypercontractivity and strong
data processing inequalities to better understand the learning onset in the IB problem. In addition,
various numerical techniques developed for the IB problem could significantly extend the range of
applicability of contraction coefficients.

6This optimization is unconstrained since the second-order loss does not depend on q2 with z ∈ Z0 (see,
footnote 4). The resulting stationary conditions are identical to Eq. (11) for q1 with z ∈ Z1 and q2 with z ∈ Z2.
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Broader Impact

Our work expects to benefit researchers working on the information bottleneck, hypercontractivity,
strong data processing inequality, and related problems. We do not anticipate that this work would
advantage or disadvantage any group.
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