
Accelerated Charged Particle Tracking with Graph
Neural Networks on FPGAs

Aneesh Heintz∗
Cornell Unviersity

Ithaca, NY 14850, USA

Vesal Razavimaleki*, Javier Duarte
University of California San Diego

La Jolla, CA 92093, USA

Gage DeZoort, Isobel Ojalvo, Savannah Thais
Princeton University

Princeton, NJ 08544, USA

Markus Atkinson, Mark Neubauer
University of Illinois at Urbana-Champaign

Champaign, IL 61820, USA

Lindsey Gray, Sergo Jindariani, Nhan Tran
Fermi National Accelerator Laboratory

Batavia, IL 60310, USA

Philip Harris, Dylan Rankin
Massachusetts Institute of Technology

Cambridge, MA, 02139, USA

Thea Aarrestad, Vladimir Loncar†, Maurizio Pierini, Sioni Summers
European Organization for Nuclear Research (CERN)

CH-1211 Geneva 23, Switzerland

Jennifer Ngadiuba
California Institute of Technology

Pasadena, CA 92115, USA

Mia Liu
Purdue University

West Lafayette, IN 47907, USA

Edward Kreinar
HawkEye360

Herndon, VA 20170, USA

Zhenbin Wu
University of Illinois at Chicago

Chicago, IL 60607, USA

Abstract

We develop and study FPGA implementations of algorithms for charged particle
tracking based on graph neural networks. The two complementary FPGA designs
are based on OpenCL, a framework for writing programs that execute across
heterogeneous platforms, and hls4ml, a high-level-synthesis-based compiler for
neural network to firmware conversion. We evaluate and compare the resource
usage, latency, and tracking performance of our implementations based on a
benchmark dataset. We find a considerable speedup over CPU-based execution
is possible, potentially enabling such algorithms to be used effectively in future
computing workflows and the FPGA-based Level-1 trigger at the CERN Large
Hadron Collider.

1 Introduction

In high energy physics (HEP), charged particle tracking [1, 2] is a crucial task necessary for the
accurate determination of the kinematics of the particles produced in a collision event. The objective
∗These two authors contributed equally.
†Also at Institute of Physics Belgrade, Belgrad, Serbia.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



of tracking algorithms is to identify the trajectories of charged particles created in the collisions that
bend in a magnetic field and ionize the material of detectors, providing position measurements along
the trajectory of each particle. Current tracking algorithms [3–8] scale worse than quadratically in the
number of hits, which are expected to increase dramatically at higher beam intensities. This motivates
the study of alternative algorithms with different computational scaling. Another important consid-
eration is the ability to accelerate these algorithms using highly-parallel heterogeneous computing
resources like graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) as
further improvements in single-core CPU performance may be limited [9, 10]. Recent efforts [11, 12]
have demonstrated the effectiveness of graph neural networks (GNNs) to correctly classify “segments”
belonging to tracks. Graph-based approaches are well suited to this task because tracking data can be
naturally encoded as a graph structure [13] and GNNs consider local information between pairs of
hits to learn relationships between them in order to “connect the dots” to infer tracks.

In this paper, we accelerate a GNN [12] for segment classification, based on the interaction network
(IN) architecture [14, 15], with FPGA implementations. Such implementations enable efficient
processing, in both speed and energy consumption for large HEP datasets. They may also enable
the use of GNNs in the high-throughput, FPGA-based data filter system, known as the Level-1 trig-
ger [16–19], which has strict sub-microsecond latency requirements that only FPGAs or application-
specific integrated circuits (ASICs) can meet. We design two complementary implementations using
OpenCL [20] and hls4ml [21, 22], a specialized compiler for converting machine learning (ML)
algorithms into FPGA firmware. We evaluate the resource usage, latency, and tracking performance
of our implementations based on the benchmark TrackML dataset [1].

2 TrackML Data and Interaction Network Models

To benchmark the algorithms, we use the TrackML dataset [1], which consists of simulated 3D
measurements of particles coming from independent collision events at the LHC. For our application,
the data is embedded as a graph by considering the hits as nodes and pairs of hits on adjacent layers as
edges. The edges corresponding to true track segments are labeled as one and all others are labeled as
zero. The goal of the segment classifier algorithm is to correctly classify the edges as true or spurious.

We focus the scope of the task by considering the innermost layers of the detector, which usually
correspond to the “pixel” detector of a modern HEP detector. We consider two subdetector regions in
the endcaps, consisting of 7 layers each, and one in the barrel of the TrackML detector, consisting
of 4 layers. Edges are constructed from hit pairs on adjacent layers satisfying ∆z < 15 cm and
∆φ/∆r < 2.62 × 10−4. Particles with transverse momentum (pT) greater than a given threshold
are used to define the hits (nodes) and true edges. For the hls4ml model, we consider graphs
corresponding to particle pT > 2 GeV, while for the OpenCL implementation we study the scaling
as a function of pT from 1 to 5 GeV. A characteristic graph for a single event is shown in Fig. 1 for
pT > 2 GeV. The graph size depends strongly on the minimum pT. For pT > 1 GeV (2 GeV), the
event graph contains approximately 5,300 (1,100) nodes and 16,600 (1,500) edges on average.

Following the approach of Ref. [11, 12], we define a “segment classifier” using an IN model [14, 15]
to learn which edges connect hits belonging to the same track. Relative to Ref. [12], the model
architecture is simplified for the more limited task and the FPGA implementations. To implement it
with hls4ml, the model shown in Figure 1 (lower left) is used. The same type of model is used for the
OpenCL implementation, as shown in Figure 1 (lower right), without encoder and decoder networks
and a different IN structure. In addition, while both models consider the 3 input node features (r, φ, z),
the hls4ml model considers 4 input edge features (∆r,∆φ,∆z,∆R), while the OpenCL model does
not consider any. Instead, in this model, the input edge features are zero vectors ek = 0, which can
be thought of as the “initial guess” of the edge weights, i.e. all edges are initially assumed to be fake.
Though we show results separately for these specific versions of the models, the hls4ml and OpenCL
implementations we developed are modular and flexible enough to accommodate both models as
well as other permutations. Appendix A demonstrates this by implementing a smaller version of
the second model in hls4ml. Benchmarking the same model implemented in both frameworks is
planned for future work.

For the hls4ml model, an encoder composed of two neural networks, φe1 and φv1 , transforms input
node and edge features into hidden representations. Both φe1 and φv1 have two layers with 8 neurons
each and rectified linear unit (ReLU) [23, 24] activation functions. The IN is divided into two parts:

2



150 100 50 0 50 100 150
X [mm]

150

100

50

0

50

100

150

Y 
[m

m
]

1500 1000 500 0 500 1000 1500
Z [mm]

150

100

50

0

50

100

150

R 
[m

m
]

(vi, ek)
Node 
block

Edge 
blockEncoder Decoder

(v′ ′ i , e′ ′ k )

e′ k = ϕe1(ek)
v′ i = ϕv1(vi)

e′ ′ k = ϕe2(e′ k, v′ rk
, v′ sk

)
ē′ ′ i = ρe→v(E′ i)

v′ ′ i = ϕv2(ē′ ′ i , v′ i)

(v′ i, e′ k) (e′ ′ ′ k )

e′ ′ ′ k = ϕe3(e′ ′ k )

ϕe1 :NN(4,8,ReLU,8,ReLU)
ϕv1 :NN(3,8,ReLU,8,ReLU)
ϕe2 :NN(24,8,ReLU,8,ReLU)
ϕv2 :NN(16,8,ReLU,8,ReLU)
ϕe3 :NN(8,8,ReLU,8,ReLU,8,ReLU,1,sigmoid)

Interaction network

e′ k = ϕe2(ek, vrk
, vsk

)
ē′ i = ρe→v(Ei)

(vi, ek)
Edge 
block

Node 
block

v′ i = ϕv2(ē′ i, vi)

(e′ ′ k )
Interaction network

Edge 
block

e′ ′ k = ϕe2(e′ k, v′ rk
, v′ sk

)

(v′ i, e′ k)

Figure 1: A characteristic graph of particles with pT > 2 GeV for one event in x–y view (upper left)
and r–z view (upper right). The black edges correspond to true track segments, while the blue edges
are spurious. GNN architectures used for the hls4ml (middle) and OpenCL (lower) implementations.

an edge block (or relational model) and a node block (or object model). The edge block network
φe2 takes as input a pair of node features with the corresponding edge features and has layers of
sizes (8, 8) with ReLU activation. The outputs of the φe2 are updated edge features, which can be
considered “messages” sent between the nodes and aggregated at each node. The node block network
φv2 takes as input the aggregated messages and the updated node features and consists of layers of
sizes (8, 8) with ReLU activation. Finally, the decoder network φv3 transforms edge features into an
edge weight classifier (the probability for a given edge to be a true track segment), and has layers of
sizes (8, 8, 8, 1) with ReLU activation on all but the final layer that has a sigmoid activation.

For the model used in the OpenCL implementation, the IN begins with an edge block where φe2
has layers of sizes (250, 250, 250, 1) with ReLU activations except for the final layer, which has a
sigmoid activation. This is followed by a node block where φv2 has layers of sizes (200, 200, 3) with
ReLU activations except for the final layer. Subsequently, the same edge block is repeated to calculate
the edge weights. The number of floating point operations (FLOPs) for both of these models scales
with the number of nodes, number of edges, and size of the neural networks.

3 Implementations

OpenCL is an open-source C-based interface for parallel computing on various hardware platforms,
including CPUs, GPUs, digital signal processors (DSPs), and FPGAs, using task and data-based
parallelism [20]. The OpenCL implementation of the IN adopts a CPU-plus-FPGA coprocessing
approach where the host program on the CPU manages the application, and all computational
operations are accelerated using dedicated kernels deployed on the FPGA that take capitalize on the
device’s hardware architecture to parallelize operations. The matrix multiplication kernel is repeatedly
executed during a forward pass of the network and leverages the FPGA architecture for an efficient

3



data-parallel implementation. This kernel uses both 2D local memory tiling and 2D register blocking
to reduce the redundancy and latency of reading from globally shared off-chip memory. Because
the input graph sizes to the network changes per event, the matrix multiplication kernels pad each
matrix before computing the result. Throughout the forward pass, several optimizations are made to
speed up computation. One example is the use of double buffering, which allows kernels to transfer
data and execute instructions concurrently. All loops iterations executed in the OpenCL kernels are
“unrolled” to run in parallel, which decreases the latency at the cost of increased hardware resource
consumption. The OpenCL implementation is tested with an Intel Programmable Accelerator Card
featuring an Arria 10 GX 1150 FPGA.

hls4ml [21] is an open-source converter of ML models into FPGA firmware utilizing Xilinx Vitis [25]
high-level synthesis (HLS) [26] for both pure FPGA hardware applications and coprocessing kernels.
In addition to implementing a GNN using available hls4ml tools, efforts are in progress to extend
the compiler to support basic GNN building blocks. Each forward pass of IN is pipelined such that
matrix multiplications are performed in parallel. Pipelining is performed at the level of the IN edge
and node blocks and the amount of pipelining is tunable through the reuse factor parameter which
controls the initiation interval (II) of each block. In conjunction with block-level pipelining, all loops
are fully unrolled to decrease latency. All GNN model inputs are implemented with a streaming
interface, which creates a FIFO that recycles its storage of array elements over each passage of a
neural network block. Streaming decreases resource utilization but may increase latency. The input
graph size is truncated to 112 nodes and 148 edges, which corresponds to the 95th percentile graph
size for the η and φ sectors, and uses zero-padding to make the inputs a uniform size. To make scans
of resources and timing more tractable, we further subdivide these graphs into quarters of up to 28
nodes and 37 edges just for the purposes of presentation. Tests of the hls4ml implementation target
a Xilinx Kintex UltraScale (KU) 115 FPGA.

4 Results

ALUT FF RAM DSP MLAB
Component

0

5

10

15

20

U
sa

ge
 [%

]

32 bit
16 bit
 8 bit

2 4
Min. track pT [GeV]

10−2

10−1

100

La
te

nc
y 

[s
]

8 bit FPGA only
8 bit CPU + FPGA

10−2 10−1 100

Event size [GB]

10−2

10−1

100

La
te

nc
y 

[s
]

8 bit FPGA only
8 bit CPU + FPGA

Figure 2: Resource system area analysis for the OpenCL implementation on an Arria 10 GX 1150
FPGA over multiple input data precision sizes (left). Scalability study in terms of latency versus
minimum pT (center) and event size (right).

For the OpenCL implementation, Fig. 2 (left) compares the resource usage for input data represented
with 8-, 16-, and 32-bit floating point precision. For most components, operating with lower precision
typically leads to lower resource usage, though the system area is dependent on other factors as
well. Execution times also increase with increasing precision from 8 to 32 bits, but not substantially,
especially for lower minimum pT. Additionally, lower precision leads to smaller input data sizes,
enabling the implementation to process events at lower pT.

Figure 2 shows how the OpenCL implementation scales with minimum pT (center) and input data size
(right). Our implementation is able to process graphs with a minimum pT as low as 1 GeV, which is
limited by hardware storage, such as host CPU RAM and on-device local RAM. An increase in input
data size increases the execution times. The largest bottlenecks are matrix multiplication operations
and the overhead time that accompanies the enqueueing the kernels. Even though this overhead
time increases as graph input size increases, enqueueing becomes more efficient. This scalability
study shows that the coprocessing approach in OpenCL is flexible with respect to data size and
can handle significant increases in data sizes. However, we note that our CPU-FPGA coprocessing
implementation is slower by about a factor of 10 from a pure CPU-based approach. In particular,

4



CPU-based inference of the same model for pT > 1 (5) GeV graphs in PYTORCH [27] is about
86 (2) ms.

For the hls4ml implementation, we first scan the fixed point precision total bit width to determine
its impact on the physics performance of the algorithm as well as the latency and resource usage on
the FPGA. We evaluate the receiver operating characteristic (ROC) curve for the segment classifier,
and use the area under the curve (AUC) as a performance metric. Figure 3 (far left) shows the AUC
as a function of the total bit precision, while the integer part is fixed to 6 bits. We see that with 12
total bits, we effectively reproduce the 32-bit floating point model. Figure 3 (center left) also shows
the latency in clock cycles (for a 5 ns clock period) as a function of the total bit precision, which
ranges from about 650 ns to 1 µs. For CPU-based inference of the same model, the latency is about
27 ms for the same sectorized pT > 2 GeV graph in the graph_nets framework [28] based on
TENSORFLOW [29]. We also scan the reuse factor at constant fixed point precision of 〈16, 6〉, to
study the resources and timing as a function of decreasing concurrency. Figure 3 shows the latency
(center left) and resource usage estimates (far right) versus reuse factor. By construction, the II for
the algorithm is equal to the reuse factor. We note that the HLS lookup table (LUT) usage tends to be
overestimated, while the HLS DSP usage tends to be accurate [21, 30, 31]. Nonetheless, to make the
algorithm fit on a single FPGA, larger reuse factors or bigger FPGAs may be necessary.

10 15 20
Total bit precision

0.7

0.8

0.9

1.0

AU
C

   112 nodes, 148 edges
hls4ml
Expected (0.983)

10 15 20
Total bit precision

140

150

160

170

La
te

nc
y 

[c
yc

le
s]

28 nodes, 37 edges

5 10 15
Reuse factor

140

160

180

200

La
te

nc
y 

[c
yc

le
s]

28 nodes, 37 edges

5 10 15
Reuse factor

0

100

200

300

400

U
sa

ge
 [%

]

28 nodes, 37 edges
DSP
LUT
BRAM
FF

Figure 3: Segment classifier AUC versus fixed point precision total bit width (far left) for the hls4ml
implementation. Latency in clock cycles for a 5 ns clock period (center left) as a function of the total
bit width for the hls4ml implementation. The reuse factor (and thus II) is set to be 8. Latency (center
right) and resource usage estimates (far right) relative to the available resources on a Xilinx KU 115
FPGA versus reuse factor for fixed total bit precision of 〈16, 6〉.

5 Summary and Outlook

We develop and study two complementary FPGA implementations of algorithms for charged particle
tracking based on graph neural networks. The first, using OpenCL, targets CPU-FPGA coprocessing
applications and achieves a latency of between 10 ms–1 s depending on the minimum pT for full
event graphs, including data transfer and I/O, for the model under consideration. The second, using
hls4ml, targets both coprocessing and custom trigger (ultra low latency) applications and has an
expected latency of 650 ns–1 µs, considering only the execution time on the FPGA, for smaller,
sectorized input graphs and a more compact model, although more work is needed to reduce the
resource consumption. Compared to CPU-based execution of the same models, the speedup for the
hls4ml implementation is considerable, but further optimizations are needed to improve on the CPU
latency for the OpenCL implementation. Continued development in this direction may allow such
algorithms to be used effectively in future computing workflows [32] and the Level-1 trigger at the
LHC. In future work, we plan to study detailed comparisons of the two implementations based on
the same model, as well as comparing to GPU coprocessors [33]. Other optimizations of the GNN
model may also be possible, such as more efficient architectures [30] and use of quantization-aware
training [31, 34] to reduce the necessary precision.

Broader Impact

This work may be used to accelerate particle tracking and other reconstruction algorithms in high
energy physics experiments. While accelerated machine learning on FPGAs has many potential
benefits to science and society, including high-quality, fast data reconstruction and selection in
experiments, automated detector control, or smarter IoT devices, it may also be used for nefarious
purposes, such as surveillance or military unmanned aerial vehicles.

5



Acknowledgments and Disclosure of Funding

We acknowledge the Fast Machine Learning collective as an open community of multi-domain
experts and collaborators. This community was important for the development of this project. The
simulations presented for the OpenCL implementation in this article were performed on computa-
tional resources managed and supported by Princeton Research Computing, a consortium of groups
including the Princeton Institute for Computational Science and Engineering (PICSciE) and the
Office of Information Technology’s High Performance Computing Center and Visualization Lab-
oratory at Princeton University. Work for the hls4ml implementation was partially performed
on the Pacific Research Platform Nautilus HyperCluster supported by NSF awards CNS-1730158,
ACI-1540112, ACI-1541349, OAC-1826967, the University of California Office of the President, and
the University of California San Diego’s California Institute for Telecommunications and Information
Technology/Qualcomm Institute. Thanks to CENIC for the 100 Gpbs networks.

A. H., V. R., and S. T. are supported by IRIS-HEP through the U.S. National Science Foundation
(NSF) under Cooperative Agreement OAC-1836650. J. D. is supported by the U.S. Department of
Energy (DOE), Office of Science, Office of High Energy Physics Early Career Research program
under Award No. DE-SC0021187. T. A., V. L., M. P., and S. S. are supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(Grant Agreement No. 772369). L. G., S. J., and N. T. are supported by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy (DOE), Office
of Science, Office of High Energy Physics. P. H. is supported by a Massachusetts Institute of
Technology University grant. Z. W. is supported by the National Science Foundation under Grants
No. 1606321 and 115164.

A Alternative GNN Model in hls4ml

In addition to the first model shown in Fig. 1, we also implement the second model in hls4ml. In this
model, the same architecture is used as the one implemented in OpenCL, except the neural network
sizes are reduced: the φe2 network has layers of sizes (8, 8, 8, 1) and φv2 has layers of sizes (8, 8, 3).
Figure 4 shows the AUC (far left) and the latency in clock cycles for a 5 ns clock period (center left)
as a function of the total bit precision, while the integer part is fixed to 6 bits. We see that above
16 total bits, the quantized model effectively reproduces the 32-bit floating point model. Figure 4
also shows the latency (center left) and resource usage estimates (far right) versus reuse factor at a
constant fixed point precision of 〈16, 6〉. This small implemented model reasonably fits on a single
FPGA with a latency less than 1 µs.

10 15 20
Total bit precision

0.4

0.6

0.8

1.0

AU
C

112 nodes, 148 edges
hls4ml
Expected (0.955)

10 15 20
Total bit precision

150

160

170

180

190

200

La
te

nc
y 

[c
yc

le
s]

28 nodes, 37 edges

5 10 15
Reuse factor

150

160

170

180

190

200

La
te

nc
y 

[c
yc

le
s]

28 nodes, 37 edges

5 10 15
Reuse factor

0

100

200

300

400

U
sa

ge
 [%

]

28 nodes, 37 edges
DSP
LUT
BRAM
FF

Figure 4: Alternative GNN segment classifier model implemented in hls4ml. AUC (far left) and
latency (center left) in clock cycles for a 5 ns clock period as a function of the total bit width. The
reuse factor (and thus II) is set to be 8. Latency (center right) and resource usage estimates (far right)
relative to the available resources on a Xilinx KU 115 FPGA versus reuse factor for fixed total bit
precision of 〈16, 6〉.

References
[1] S. Amrouche et al., “The tracking machine learning challenge: Accuracy phase”, in The

NeurIPS ’18 Competition, S. Escalera and R. Herbrich, eds., p. 231. Springer, Cham,
Switzerland, 2020. arXiv:1904.06778. doi:10.1007/978-3-030-29135-8_9.

[2] A. Strandlie and R. Frühwirth, “Track and vertex reconstruction: From classical to adaptive
methods”, Rev. Mod. Phys. 82 (2010) 1419, doi:10.1103/RevModPhys.82.1419.

6

http://www.arXiv.org/abs/1904.06778
http://dx.doi.org/10.1007/978-3-030-29135-8_9
http://dx.doi.org/10.1103/RevModPhys.82.1419


[3] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction
with the CMS tracker”, J. Instrum. (2014) P10009,
doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[4] ATLAS Collaboration, “Performance of the ATLAS track reconstruction algorithms in dense
environments in LHC Run 2”, Eur. Phys. J. C 77 (2017) 673,
doi:10.1140/epjc/s10052-017-5225-7, arXiv:1704.07983.

[5] P. Billoir, “Progressive track recognition with a Kalman-like fitting procedure”, Comput. Phys.
Comm. 57 (1989) 390, doi:10.1016/0010-4655(89)90249-X.

[6] P. Billoir and S. Qian, “Simultaneous pattern recognition and track fitting by the Kalman
filtering method”, Nucl. Instrum. Methods Phys. Res. A 294 (1990) 219,
doi:10.1016/0168-9002(90)91835-Y.

[7] R. Mankel, “A concurrent track evolution algorithm for pattern recognition in the hera-b main
tracking system”, Nucl. Instrum. Methods Phys. Res. A 395 (1997) 169,
doi:10.1016/S0168-9002(97)00705-5.

[8] R. Frühwirth, “Application of Kalman filtering to track and vertex fitting”, Nucl. Instrum.
Methods Phys. Res. A 262 (1987) 444, doi:10.1016/0168-9002(87)90887-4.

[9] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling”, in Proceedings of the
38th Annual International Symposium on Computer Architecture, p. 365. ACM, New York, NY,
USA, 2011. doi:10.1145/2000064.2000108.

[10] R. H. Dennard et al., “Design of ion-implanted MOSFET’s with very small physical
dimensions”, IEEE J. Solid-State Circuits 9 (1974) 256,
doi:10.1109/JSSC.1974.1050511.

[11] S. Farrell et al., “Novel deep learning methods for track reconstruction”, in 4th International
Workshop Connecting The Dots 2018. 2018. arXiv:1810.06111.

[12] X. Ju et al., “Graph neural networks for particle reconstruction in high energy physics
detectors”, in Machine Learning and the Physical Sciences Workshop at the 33rd Annual
Conference on Neural Information Processing Systems. 2019. arXiv:2003.11603.

[13] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle physics”,
doi:10.1088/2632-2153/abbf9a, arXiv:2007.13681. Accepted by Mach. Learn.: Sci.
Tech.

[14] P. W. Battaglia et al., “Interaction networks for learning about objects, relations and physics”, in
Advances in Neural Information Processing Systems, volume 29, p. 4502. 2016.
arXiv:1612.00222.

[15] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”,
arXiv:1806.01261.

[16] ATLAS Collaboration, “Operation of the ATLAS trigger system in Run 2”, J. Instrum. 15
(2020) P10004, doi:10.1088/1748-0221/15/10/P10004, arXiv:2007.12539.

[17] ATLAS Collaboration, “Technical Design Report for the Phase-II Upgrade of the ATLAS
TDAQ System”, ATLAS Technical Design Report CERN-LHCC-2017-020. ATLAS-TDR-029,
2017.

[18] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at√
s = 13 TeV”, J. Instrum. 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017,

arXiv:2006.10165.

[19] CMS Collaboration, “The Phase-2 upgrade of the CMS Level-1 trigger”, CMS Technical
Design Report CERN-LHCC-2020-004. CMS-TDR-021, 2020.

[20] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard for
heterogeneous computing systems”, Comput. Sci. Eng. 12 (2010) 66,
doi:10.1109/MCSE.2010.69.

7

http://dx.doi.org/10.1088/1748-0221/9/10/P10009
http://www.arXiv.org/abs/1405.6569
http://dx.doi.org/10.1140/epjc/s10052-017-5225-7
http://www.arXiv.org/abs/1704.07983
http://dx.doi.org/10.1016/0010-4655(89)90249-X
http://dx.doi.org/10.1016/0168-9002(90)91835-Y
http://dx.doi.org/10.1016/S0168-9002(97)00705-5
http://dx.doi.org/10.1016/0168-9002(87)90887-4
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://www.arXiv.org/abs/1810.06111
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
http://www.arXiv.org/abs/2003.11603
http://dx.doi.org/10.1088/2632-2153/abbf9a
http://www.arXiv.org/abs/2007.13681
http://www.arXiv.org/abs/1612.00222
http://www.arXiv.org/abs/1806.01261
http://dx.doi.org/10.1088/1748-0221/15/10/P10004
http://www.arXiv.org/abs/2007.12539
https://cds.cern.ch/record/2285584
https://cds.cern.ch/record/2285584
http://dx.doi.org/10.1088/1748-0221/15/10/P10017
http://www.arXiv.org/abs/2006.10165
https://cds.cern.ch/record/2714892
http://dx.doi.org/10.1109/MCSE.2010.69


[21] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics”, J.
Instrum. 13 (2018) P07027, doi:10.1088/1748-0221/13/07/P07027,
arXiv:1804.06913.

[22] V. Loncar et al., “fastmachinelearning/hls4ml: aster”, 10, 2020.
doi:10.5281/zenodo.4161550,
https://github.com/fastmachinelearning/hls4ml.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines”, in
Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, p. 807. Omnipress, Madison, WI, USA, 2010.

[24] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks”, in Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics, G. Gordon,
D. Dunson, and M. Dudík, eds., volume 15 of Proceedings of Machine Learning Research,
p. 315. JMLR, Fort Lauderdale, FL, USA, 4, 2011.

[25] Xilinx, Inc., “Vivado design suite user guide: High level synthesis”, 2020.
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/
ug902-vivado-high-level-synthesis.pdf.

[26] D. O’Loughlin et al., “Xilinx vivado high level synthesis: Case studies”, in Irish Signals &
Systems Conference 2014 and 2014 China-Ireland International Conference on Information
and Communications Technologies (ISSC 2014/CIICT 2014). 25th IET Year, p. 352. 2014.
doi:10.1049/cp.2014.0713.

[27] A. Paszkeet al., “PyTorch: An imperative style, high-performance deep learning library”, in
Advances in Neural Information Processing Systems, H. Wallach et al., eds., volume 32,
p. 8024. Curran Associates, Inc., 2019. arXiv:1912.01703.

[28] DeepMind, “graph_nets”, 2019. https://github.com/deepmind/graph_nets.

[29] M. Abadiet al., “TensorFlow: Large-scale machine learning on heterogeneous systems”, 2015.
https://www.tensorflow.org.

[30] Y. Iiyama et al., “Distance-weighted graph neural networks on FPGAs for real-time particle
reconstruction in high energy physics”, doi:10.3389/fdata.2020.598927,
arXiv:2008.03601. Accepted by Front. Big Data.

[31] G. Di Guglielmo et al., “Compressing deep neural networks on FPGAs to binary and ternary
precision with hls4ml”, doi:10.1088/2632-2153/aba042, arXiv:2003.06308.
Accepted by Mach. Learn.: Sci. Technol.

[32] D. S. Rankin et al., “FPGAs-as-a-service toolkit (FaaST)”, in 2020 IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC). 2020.
arXiv:2010.08556.

[33] J. Krupa et al., “GPU coprocessors as a service for deep learning inference in high energy
physics”, (2020). arXiv:2007.10359. Submitted to Mach. Learn.: Sci. Technol.

[34] C. N. Coelho et al., “Automatic deep heterogeneous quantization of deep neural networks for
ultra low-area, low-latency inference on the edge at particle colliders”, arXiv:2006.10159.
Submitted to Nat. Mach. Intell.

8

http://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://www.arXiv.org/abs/1804.06913
http://dx.doi.org/10.5281/zenodo.4161550
https://github.com/fastmachinelearning/hls4ml
https://icml.cc/Conferences/2010/papers/432.pdf
http://proceedings.mlr.press/v15/glorot11a.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
http://dx.doi.org/10.1049/cp.2014.0713
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.arXiv.org/abs/1912.01703
https://github.com/deepmind/graph_nets
https://github.com/deepmind/graph_nets
https://www.tensorflow.org
https://www.tensorflow.org
http://dx.doi.org/10.3389/fdata.2020.598927
http://www.arXiv.org/abs/2008.03601
http://dx.doi.org/10.1088/2632-2153/aba042
http://www.arXiv.org/abs/2003.06308
http://www.arXiv.org/abs/2010.08556
http://www.arXiv.org/abs/2007.10359
http://www.arXiv.org/abs/2006.10159

	Introduction
	TrackML Data and Interaction Network Models
	Implementations
	Results
	Summary and Outlook
	Alternative GNN Model in hls4ml

