A Hybrid Gradient Method to Designing Bayesian Experiments for Implicit Models

JOHNS HOPKINS

UNIVERSITY

Jiaxin Zhang", Sirui Bi*3, Guannan Zhang SO
'Computer Science and Mathematics Division, Oak Ridge National Laboratory ): "NEURAL INFORMATION
2Department of Civil and Systems Engineering, Johns Hopkins University, 3Computational Sciences and Engineering Division, Oak Ridge National Laboratory, .’-f.y
*Email address: zhangj@ornl.gov

PROCESSING SYSTEMS

Introduction

Bayesian experimental design (BED) is to choose designs that
maximize the information gathering. For implicit models, where the
likelihood is intractable, but sampling is possible, conventional
BED methods have difficulties in efficiently estimating the posterior
distribution and maximizing the mutual information (MI) between
data and parameters.

Recent work using gradient ascent to maximize a lower bound on
M| was proposed to deal with the issues. However, the approach
requires a sampling path to compute the pathwise gradient of the
MI lower bound with respect to the design variables, and such a
pathwise gradient is usually inaccessible for implicit models.

Novel contribution; SAGABED framework

» We propose a general unified framework that leverages
stochastic approximate gradient without the requirement or
assumption of pathwise gradients for implicit models.

* We introduce a smoothed MI lower bound to conduct robust
MI estimation and optimization, which allows the variance of
the design and posterior distribution to be much smaller
than existing approaches.

» We show the superior performance of the approach through
several experiments and demonstrate that the approach enables
the optimization to be performed by stochastic gradient ascent
algorithm and thus well scaled to considerable high
dimensional design problems.

Bayesian experimental design (BED)

BED framework aims at choosing an experimental design £ to
maximize the information gained about some parameters of
interest 8 from the outcome ¥ of the experiment.

Expected information gain: 1(§) = E,,1¢)[2[p(0)] — 2[p(0|y,§)]]

EIG can be interpreted as a mutual information between g and y
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Conventional approach: nested Monte Carlo (NMC) estimator,
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Intensive!

Stochastic Approximate Gradient Ascent BED

Belghazi et al (2018) proposed to estimate M| by gradient ascent
over neural networks and argued that the lower bound can be
tightened by optimizing the neural network parameters, MINE

IMINE(€,%) = E 9.41e) [T (8, 9)] — 102 E ,(g) oy 1) [T Y]

BED problem can be formulated by maximizing the overall objective

f* — argznaxmilx {IMINE (f, ’(p)} .

Smoothed MI estimator: reduce the variance with clip operation

IsmiLe (€, %) = E p0.416) [ T (0,9)] — 108E (9) p(y1e) [clip(e7# @ ¥) e 7T 7))

Stochastic gradient approximate: evolution strategies

fo(&) =Ec y(01,) [f(§+0€)]  Algorithm 1: The SAGABED algorithm
1 1: Require: neural network architectures, learning rates

— |} £y and f¢, 7 in IsmmLe, total prior samples n, total
Vfa (5) 0] e~ (0,1g) [f(€ T GE) E] iterations T, implicit model M

Process:
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Initialize a design &y by random sampling

Initialize neural network parameter ¢

fort=0:T—-1do
Draw n samples from the prior distribution of the
model parameters 6:
o), ...,0™ ~ p(0)
Compute the corresponding data samples y(i), 1=
1,...,n using the current design &; and a implicit
model M
Evaluate the smoothed MI lower bound IsmiLg by
Eq. (9) at the current design &; and network param-
eters ¥,
Compute the approximate gradient estimator
VelIsmiLe(&t, ¥¢) using the GES algorithm
Evaluate the gradient of the Isying with respect
to the network parameters V., IsmiLe(§,) using
PyTorch

11:  Update design &: via gradient ascent:

Et+1 = &t + LeVelsmLe (&, Yt)

Guided ES algorithm
>=(a/n)-Li+(1—a)/k-UU" "

SAGABED for implicit models *

 Unified framework vs. two-
stage framework 10:

« Scalability, portability, and
parallelization

_ _ _ 12: Update neural network parameters 1); via gradient
 Robust estimation with low ascent:
: Pi+1 = Y + Ly Ve Isvmie (&t, Y1)
variance 13: end for

Experiments: toy examples

Noisy linear regression Pharmacokinetic model
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Statistical analysis of posterior samples

Table 1: Estimating mean and standard deviation of the posterior samples of the model parameters 6 using optimal
designs d* and real data observation y* (use @irye = [1,4] to generate y*)

Method D=1 D=10 D=50 D=100
b, 0 b, 0. 0, 0 b, 0.
MINE + SGD  -1.3942.54 6.03+£0.93 0.51+0.44 2.99+0.67 1.20+0.18 3.79+£0.23  0.97+£0.05  4.040.04
MINE + BO  -1.424+0.81 2.98+1.19 1.22+0.58 4.93£0.91 0.71£0.25 3.66+0.40 1.35+0.21  4.7940.26
SMILE + GES  2.76£1.36  5.74+3.08 0.83+£0.56 4.69+0.58 1.114+0.13 4.25+0.19 1.02+0.04 3.98+0.03
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Conclusion and future work

Develop a general unified framework that utilizes the stochastic
approximate gradient for BED with implicit models. Our approach
allows to scaled to substantial high dimensional design problems.
The future work will focus on the extension of our proposed
framework to sequential Bayesian optimization design (SBED).
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