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Abstract

This paper presents an approach to improve computational fluid dynamics simula-
tions forecasts of air pollution using deep learning. Our method, which integrates
Principal Components Analysis (PCA) and adversarial training, is a way to improve
the forecast skill of reduced order models obtained from the original model solution.
Once the reduced order model (ROM) is obtained via PCA, a Long Short-Term
Memory network (LSTM) is adversarially trained on the ROM to make forecasts.
Once trained, the adversarially trained LSTM outperforms a LSTM trained in a
classical way. The study area is in London, including velocities and a concentration
tracer that replicates a busy traffic junction. This adversarially trained LSTM-based
approach is used on the ROM in order to produce faster forecasts of the air pollution
tracer.

1 Introduction

Given the amount of data in Computational Fluid Dynamics (CFD) simulations, data-driven ap-
proaches can be seen as attractive solutions to produce reduced order models (ROMs). Furthermore,
forecasts produced by these surrogates can be obtained at a fraction of the cost of the original CFD
model solution when used together with a ROM. Recurrent neural networks (RNN) have been used
to model and predict temporal dependencies between inputs and outputs of ROMs.

Non-intrusive ROMs and RNNs have been used together in previous studies, e.g. [Quilodrán Casas
et al., 2020, Reddy et al., 2019]. The surrogate forecast systems can easily reproduce a time-step in
the future accurately, when data from the original training is available [Wu et al., 2020]. However,
the problem of these surrogates relies on the error propagation either produced by the ROM or the
forecast system, especially when the forecasts wander off the training data. When the predicted output
is used as an input for the prediction of the subsequent time sequence, the results can diverge quickly
when encountering out-of-distribution data. In real-time applications, like urban air pollution, fast
forecasts are urgently needed and an accurate system that can provide reliable forecasts is extremely
useful.

A way to obtain reliable forecasts comes from adversarial losses via adversarial training. Generative
adversarial networks (GANs) [Goodfellow et al., 2014] are a class of unsupervised machine learning
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algorithms. In essence, a GAN learns a generative model with the guidance of a discriminator model
which is trained jointly, and the loss function provided by the discriminator is referred to as an
adversarial loss. However, the idea of adversarial losses can also be applied to supervised scenarios
and have advanced the state of the art in many fields over the past years [Dong and Yang, 2019,
Wang et al., 2019]. Additionally, robustness may be achieved by detecting and rejecting adversarial
examples by using adversarial training [Shafahi et al., 2019, Meng and Chen, 2017]. Data-driven
modelling of nonlinear fluid flows incorporating adversarial networks have been successfully being
studied previously [Cheng et al., 2020, Xie et al., 2018].

This extended abstract applies adversarial training to a LSTM network, based on a ROM of an urban
air pollution simulation in an unstructured mesh. The robustness added by the adversarial training
allows us to reduce the divergence of the forecast prediction over time, with similar execution times
than a LSTM non-adversarially trained.

2 Methods

The methodology applies an adversarial training to a supervised ROM-based LSTM, in order to obtain
reliable fast forecasts. The non-intrusive ROM is obtained via PCA [Arcucci et al., 2019]. Given that
the CFD simulation used in this study contains O(105) dimensions and it is in an unstructured mesh,
there are two issues that arise if fast forecasts are needed.

Firstly, a simulation of this size requires the use of a supercomputer, due to processing power and
memory constraint, in order to produce the next time-step. One way to reduce the dimensionality is
using PCA, which decomposes the data into linear basis functions that describe the original problem
data. The caveat of using PCA is that the dimension reduction comes from truncating the Principal
Components (PC), and by doing so the retained variance decreases. However, for the purposes of the
forecast only, only a truncated PCA dimension reduction is used here.

Secondly, a traditional 3D Convolutional Neural Network (CNN) is not trivial since the CFD
simulation lies on a unstructured mesh rather than on a regular grid [Kim et al., 2019, Quilodrán Casas
et al., 2020].

The workflow is presented in Figure 1.

Figure 1: Proposed workflow for adversarial training of LSTM. The dimension-reduced data is used
as an input in the LSTM, and its output is judged by the LSTM discriminator. The LSTM takes N
previous time-steps to produce a forecast of t + 1. The vectorisation translates each point of the
unstructured mesh onto a 1-dimensional vector x. Then, P are the principal components of x.
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2.1 Principal Components Analysis

As described by Lever et al. [2017] PCA is an unsupervised learning method that simplifies high-
dimensional data by transforming it into fewer dimensions. Let

x = {xt}t=1,...,n (1)

x ∈ <n×m, with n < m, denotes the matrix of the model vectors at each time step. The PCA consists
in decomposing this dataset as:

x = PΠ + x̄ (2)
xτ = PτΠτ + x̄ (3)

where P ∈ <n×n are the principal components of x; Π ∈ <n×m are the Empirical Orthogonal
Functions; and x̄ is the mean vector of the model. The dimension reduction of the system comes
from truncating P at the first τ PCs, with Pτ ∈ <n×τ .

2.2 Adversarially trained long short-term memory

Once the truncated PCs are obtained, they can be used to train a LSTM [Hochreiter and Schmidhuber,
1997] to make predictions. In this paper, a vanilla LSTM network takes N previous time-steps of
Pt−N , . . . ,Pt as input and predicts an approximation of Pt+1, named P̃t+1:

fLSTM : Pt−N , . . . ,Pt → P̃t+1. (4)

Our methodology proposes to add adversarial training to the LSTM network is order to further
improve the forecasts.

The supervised adversarial training includes a discriminator to distinguish between the real samples
of the Principal Components P and predictions P̃ produced by fLSTM . The P are fed to the
discriminator as real sequences (ground truth). Let, D(x, y) represent the discriminator function
with an input x and a target label y such that, for x = Pt+1, y = 1 and for x = P̃t+1, y = 0 . The
training of D is based on the minimisation of the binary cross-entropy loss (Lbce), using the Nesterov
Adam optimizer (Nadam) [Dozat, 2016]. The loss of fLSTM also includes the mean squared error
(mse) between P̃t+1 and Pt+1.

The adversarial losses Ladv for D and fLSTM are then defined as:

LadvD (Pt+1) = Lbce(D(Pt+1, 1)) + Lbce(D(fLSTM (Pt−N , . . . ,Pt), 0)) (5)

LadvfLSTM (P) = Lbce(D(fLSTM (Pt−N , . . . ,Pt), 1)) + Lmse(fLSTM (Pt−N , . . . ,Pt)) (6)

3 Study area, model data and results

The computational fluid dynamics (CFD) simulations were carried out using Fluidity [Davies et al.,
2011] (http://fluidityproject.github.io/). The study area is a 3D realistic representation of
a part of South London. The dispersion of the pollution is described by the classic advection-diffusion
equation (eq. (7)).

∂c

∂t
+∇.(uc) = ∇.

(
κ∇c

)
+ F (7)

where κ is the diffusivity tensor (m2/s), c is the concentration and F represents the source terms
(kg/m3/s). The passive tracer is the transport of a scalar field representing a point source mimicking
pollution in a traffic congested junction whose advection and diffusion depend on velocity, pressure
and density.

The 3D case is composed of an unstructured mesh including m = 100, 040 nodes per dimension
and n = 1500 time-steps. The wind profile of the atmospheric boundary layer is represented by a
log-profile velocity. The top and the sides of the model domain have a perfect slip boundary condition,
while the facades of the buildings and the bottom of the model domain have a no-slip boundary. The
pollution background is modelled as a sinusoidal function. This background pollution mimics waves
of pollution in an urban environment.
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4 Experiments and results

Four experiments were set up to assess the improved forecast of the adversarially trained LSTM. A
PCA was applied to two output fields from the CFD simulation: Tracer (1-dimensional, unitless), and
Velocity (3-dimensional, ms−1). To each of these set of PCs, a truncation of 64 and 128 PCs was
applied which explains over 90% of variance in each case. The truncation to 64 PCs and 128 PCs
reduces the size of the dataset by 4 and 3 orders of magnitude, respectively. Only 90% of the data is
used for training, and 10% is used for validation.

Firstly, a grid search for optimal hyperparameters was set up for each of these experiments, including
dropouts, hidden nodes in the LSTM, batch sizes, activation function of the output layer, and lags.
Once the optimal set of hyperparameters for each experiment is found, the trained LSTM (named
LSTM classic) is saved.

Secondly, the adversarially trained LSTM (named LSTMadv) is setup with the same optimal
hyperparameters found for each combination. The adversarial training includes a discriminator D.
The discriminator D is a LSTM that takes P̃ and outputs between 0 and 1 (sigmoid function) as
described in Section 2.2. The hyperparameters used to train the LSTM networks for each experiment
are summarised in table 1. The adversarial training adds the same mirrored architecture as a
discriminator D with an output dense layer of size 1 with a sigmoid activation function, and binary
cross-entropy as loss. Both LSTM classic and LSTMadv were trained for 5000 epochs with a
piece-wise mean squared error loss.

Table 1: Hyperparameters for each experiment. AF is the activation function in the output layer, and
Time-lag is the number of time-steps used to predict the following one.

Experiments Batch size Hidden nodes LSTM Dropout AF Time-lag
Tracer τ = 64 32 256 0.5 ReLU 2

Tracer τ = 128 32 256 0.3 Sigmoid 2
Velocity τ = 64 32 128 0.5 ReLU 2

Velocity τ = 128 32 256 0.5 Sigmoid 2

Figure 2 presents the error from an ensemble of forecasts, of velocities in X, Y, Z and Tracer, starting
from different time-steps. The solid line represents the mean of the error ensemble and the shaded
area is the standard deviation from the mean. The red shaded area is LSTMadv, while the blue
shaded area is LSTM classic. The forecasts are created by using previous time-steps from data
and producing a forecast. This forecast is subsequently used as an input for the prediction of the
next time-step. After 50 iterations, it is very clear that LSTMadv outperforms LSTM classic. The
forecasts are 4 orders of magnitude faster than the CFD simulation. Table 2 shows further results for
all the experiments.

Table 2: Forecast improvement, error reduction in % of LSTMadv over LSTM classic.
Within training data Within validation data
Velocity Tracer (c) Velocity Tracer (c)

PCs X Y Z X Y Z
τ = 64 21.07 22.21 83.32 18.95 11.90 12.14 13.52 9.01
τ = 128 51.09 51.39 49.13 56.29 8.13 8.18 10.02 6.46

Figure 3 shows the comparison of forecasted magnitude velocity (in ms−1) fields of LSTMadv

and LSTM classic using 64 PCs from t = 350. The snapshots show clearly that after 25 time-steps
of forecasting, LSTM classic diverges quickly from the underlying model state, while LSTMadv

preserve more underlying physics.

5 Summary and future work

This paper presented an adversarially trained LSTM that improves the forecast of a LSTM trained
in a classical way. This is important when accurate near real-time predictions are needed and not
enough data is available. It can be observed that adversarially trained LSTM does not diverge greatly
from the data it has learned, given the constraint of the discriminator network.
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Figure 2: Comparison of LSTM classic (blue) and LSTMadv (red). The shaded areas show an
ensemble of errors of 50 time-step long forecast from different starting points from t = 350 to
t = 400 (within training data) with 128 PCs. The solid line is the mean and the shaded area is one
standard deviation from the mean.

Figure 3: Comparison of forecasted velocity in ms−1 (magnitude) fields by LSTMadv and
LSTM classic with 64 PCs. This is a 25 time-step forecast starting from t = 350. Left: Ground
truth at t = 375, Middle: LSTMadv forecasted 25 time-steps from t = 350, Right: LSTM classic

forecasted 25 time-steps from t = 350.

The replacement of the CFD solution by these models will speed up the forecast process towards a
real-time solution. And, with the application of adversarial training could potentially produce more
physically realistic flows. Future work will apply the same methodology to different dimension
reduction schemes. Furthermore, this framework is data-agnostic and could be applied to different
CFD models where enough data is available.
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Broader Impact

In this paper, researchers introduced an adversarially trained LSTM to improve the forecast of reduced
order models of urban air pollution. The impact of this research is likely to drive the development of
improved urban air pollution forecasts, at a fraction of the computational costs but equally as accurate.
Our framework comes from the urgency to create data-driven real-time forecasts from expensive
computational fluid dynamics simulations. Furthermore, our framework is data-agnostic and can be
applied to different variables or simulations where there is enough available data.
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