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Abstract

A central ingredient in the impressive predictive performance of deep neural
networks is optimization via stochastic gradient descent (SGD). While some theo-
retical progress has been made, the effect of SGD in neural networks is still unclear,
especially during the early phase of training. Here we generalize the theory of
thermophoresis from statistical mechanics and show that there exists an effective
entropic force from SGD that pushes to reduce the gradient variance. We study
this effect in detail in a simple two-layer model, where the thermophoretic force
functions to decreases the weight norm and activation rate of the units. The strength
of this effect is proportional to squared learning rate and inverse batch size, and
is more effective during the early phase of training when the model’s predictions
are poor. Lastly we test our quantitative predictions with experiments on various
models and datasets.

1 Introduction

Deep neural networks have achieved remarkable success in the past decade on tasks that were out
of reach prior to the era of deep learning. Yet fundamental questions remain regarding the strong
performance of over-parameterized models and optimization schemes that typically involve only
first-order information, such as stochastic gradient descent (SGD) and its variants.

In particular, optimization via SGD is known in many cases to result in models that generalize better
than those trained with full-batch optimization. To explain this, much work has focused on how SGD
navigates towards so-called flat minima, which tend to generalize better than sharp minima [14, 17].
This has been argued by nonvacuous PAC-Bayes bounds [5] and Bayesian evidence [26]. More
recently, [30] discuss how optimization via SGD pushes models to flatter regions within a minimal
valley by decreasing the trace of the Hessian.

However, these perspectives apply to models towards the end of training, whereas it is known that
proper treatment of hyperparameters during the early phase is vital. In particular, when training a
deep network one typically starts with a large learning rate and small batch size if possible. After
training has progressed, the learning rate is annealed and decreased so that the model can be further
trained to better fit the training set [18, 25, 13, 12, 33, 29]. Crucially, using a small learning rate
during the first phase of training usually leads to poor generalization and also results in large gradient
variance in practice [16, 7].

However, limited theoretical work has been done to understand the effect of SGD on the early phase
of training. [16] argues for the existence of a “break-even" point on an SGD trajectory. However
their analysis focuses only on the leading eigenvalue of the Hessian spectrum and requires the strong
assumption that the loss function in the leading eigen-subspace is quadratic. Meanwhile [22] studied
the simple setting of two-layer neural networks. This work relies heavily on the existence of these two
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distinct types of features in the data and the specific network architecture. Moreover, their analysis
focuses mainly on learning rate instead of the effect of SGD.

In this paper, we study the dynamics of model parameter motion during SGD training by borrowing
and generalizing the theory of thermophoresis from physics. With this framework, we show that
during SGD optimization, especially during the early phase of training, the activation rate of hidden
nodes is reduced as is the growth of parameter weight norm. This effect is proportional to squared
learning rate and inverse batch size. Thus, thermophoresis in deep learning acts as an implicit
regularization that may improve the model’s ability to generalize.

2 Thermophoresis in General

In this section, we study thermophoresis in a generalized inhomogeneous and anisotropic random
walk. A brief discussion of thermophoresis theory in physics can be found in Appendix A.3. We
first define a kind of generalized random walk that has evolution equations for a particle state with
coordinate q = {qi}i=1,...,n as

qt+1 = qt − ηγf(qt, ξ) , (1)
where f is a vector function, γ and ξ are random variables, and η is a small number controlling the
step size. Notice that this is a generalized inhomogeneous random walk for the particle. Before
further analysis, it is noted that the evolution equations 1 is similar to SGD updates in machine
learning and we will show this in the next section.

To isolate the effect of thermophoresis, we assume the random walk is unbiased, in which case

P (γf(q, ξ) = a) = P (γf(q, ξ) = −a), (2)

for an arbitrary vector a. Thus there is no explicit force exerted on the particle. We also denote the
particle mass density as ρ(q) and

gi(q) :=

√∫
γ2f2i (q, ξ)dµ(γ, ξ), (3)

so that ηgi(q) is the standard deviation of the random walk in the ith direction.

From a position q, we consider a subset of coordinate indices, U ⊆ {1, . . . , n}, wherein

(fi(q, x)) = (fj(q, x)) and ∂igj(q) ≥ 0 (4)

for all i, j ∈ U .

In order to study the dynamics of the particle and its density function, we focus on the mass flow
induced by the inhomogeneous random walk. We will show that there is always a flow from regions
with larger gi(q) to those with smaller gi(q) for i ∈ U , which is a generalization of thermophoresis
in physics.

Since η � 1, the movement of the particle will have a mean free path of gi(q) in ith direction.
Therefore the random walk equation 1 becomes

qi = qi − ηgi(q)ζi, (5)

where i = 1, . . . , n and ζi is a binary random variable with P (ζi = −1) = P (ζi = 1) = 0.5.
Moreover, from Eq. 4, we also have that ζi = ζj for all i and j ∈ U .

It can be shown that there exists a mass flow1 is

J = −η2
√∑
i∈U

g2i (q)
∑
i∈U

gi(q)∂iρ(q)− η2
∑
i,j∈U gi(q)gj(q)∂jgi(q)√∑

i∈U g
2
i (q)

ρ(q) +O(η3), (6)

where the derivation can be found in Appendix A.4. This can be understood as describe in Diagram 2.

Notice that the mass flow consists of two main terms. The first one represents the diffusion and the
second term corresponds to our goal in this section, which results in thermophoresis. By definition of

1More specifically, flow density.
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function g and Eq. 4, we know that the coefficient of thermophoresis (Soret coefficient), which is
defined as

c− η2
∑
i,j∈U gi(q)gj(q)∂jgi(q)

2
√∑

i∈U g
2
i (q)

(7)

≥ 0, (8)

is negative. This means that there is an effective force exerted on particle at q towards the smaller
variance regime (by analogy, the colder area). The coefficient is proportional to η2.

3 Thermophoresis in Deep Learning

To study the physics behind SGD optimization in detail, we consider the simple setting of one-hidden
layer neural networks. The network is a function f : RM → R parameterized as follows:

f(x; V,W,b) = Vσ(Wx + b) .

We also write f(x) for simplicity. The network has a scalar output, which is widely used in regression
and binary classification. x is the network input with dimension M , W and b are the weights and
biases in the first layer with dimension N ×M and N respectively, where N is the number of hidden
nodes in the hidden layer, and σ is the ReLU activation function defined as σ(a) = max(0, a).

We consider use binary cross entropy as the loss function, so the mini-batch gradient becomes

∇LB(V,W,b) =
1

|B|

|B|∑
i=1

(pi − yi)∇f(xi). (9)

The detailed analysis of training dynamics can be found in Appendix A.6. There we show that the
parameters in this model and their dynamics approximately satisfy the criteria of the previous section,
and that the biases are pushed negative and V 2 is suppressed during training, the effects of both of
which are proportional to squared learning rate η2 and inverse batch size 1/|B|.
It is shown in Appendix A.7 that there exists an effective force that pushes to decrease the model’s
activation rate, defined in equation 25, and reduces the weight norm of the second layer. The strength
of this force scales as

F ∝ η2

|B|
. (10)

In [21], Theorem 4.1 presents a linear relation between learning rate and training iterations for a
target training error ε and small learning rate. This implies that if one uses a learning rate k times
larger, the model will require k times fewer optimization steps for the same training performance.
Together with our results, this implies the following: for the same model and initialization, comparing
two optimization schemes with η1 ≤ η2 each achieving a given training error, the activation rate for
scheme 1 will be at least as large as that for scheme 2, i.e. σ1 ≥ σ2. Similarly, denoting the weight
norm for scheme 1(2) by v1(v2), we have that v1 ≥ v2.

Model sparsity can mean two different things: sparsity of the weights, and frequency with which
units are activated, called the activation rate. Intuitively, a sparser model has a smaller capacity
[2, 19, 1, 23]. One advantage of sparsity is for model pruning, where model parameters or units
can be removed systematically in order to obtain an effective model with smaller size [11, 10, 32].
Furthermore, model pruning has been shown to improve generalization [8, 9]. Therefore it may be
expected that a small activation rate correlates with generalization. Moreover, in Appendix A.8, we
construct a upper bound of Hessian norm which depends monotonically on activation rate and weight
norm. This also sheds light on the connection between sparsity, weight norm, and generalization.

Our theory can also be generalized beyond two-layer models. We have shown that there exists
an effective force in deep neural networks from SGD that reduces the gradient variance and have
quantitatively characterized it.
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Figure 1: All rows include rescaled x-axes as described in the main text. Top Row: Plots of activation
rate as a function of (rescaled) training iterations with different learning rates. The model is a
two-layer fully-connected network with 100 hidden units. Training data is drawn from a normal
distribution. Middle Row: Plots of average gradient variance as a function of (rescaled) training
iterations with different learning rates in 6-layer fully-connected neural networks. Training data is
drawn from normal distribution. Bottom Row: Same as middle row but for 6-layer convolutional
neural networks trained on Fashion-MNIST.

4 Experiments and Conclusion

The essential result from the previous section is that there exists an effective force from SGD,
analogous to thermophoresis, that pushes to decrease the gradient variance, and in one-hidden-layer
neural networks decreases the model’s activation rate and reduces the weight norm of the second
layer. The strength of the force is proportional to squared learning rate and inverse batch size. In this
section, we present experiments to test these results.

First we consider a one hidden layer model with input dimension 100 and 100 hidden units. The
input data, x, is distributed asN (0, I) where I is the identity matrix, and the label is randomly chosen
from {0, 1}. Batch size is set to 1 and the learning rate is varied from 0.025 to 0.1. We calculate the
activation rate and L2 norm of the vector V after each training iteration. The result for activation
rate is shown in the first row of Fig. 1. The leftmost plot shows activation rate as a function of true
iteration on the x-axis, and we see that activation rate decreases during training, and the decreasing is
more rapid with larger learning rate. In the middle plot we rescale the x-axis by a factor proportional
to learning rate η2. This rescaling factor is to offset the movement difference due to learning rate
difference. It is clear that even after this rescaling, we still observe that larger learning rates decrease
the activation rate faster. Finally, on the rightmost plot we rescale the x-axis with a factor proportional
to squared learning rate η2. We see that all trajectories now overlap, which matches our prediction in
the previous section that decreasing rate is proportional to η2.

We next test our results for deep neural networks beyond the two-layer model. Instead of activation
rate and weight norm, we plot the gradient variance as predicted by our theory. Network architectures
are 6-layer fully-connected with hidden layer sizes of 100 and 6-layer convolutional with 10 channels
with kernel size of 5*5 and stride 1 except the last fully-connected layer output. The results are shown
in the second row of Fig. 1 and the third row of Fig. 1, respectively.

To summarize, in this paper we generalized the theory of thermophoresis, showing that there exists
an effective thermophoretic force from SGD ∝ η2/|B| that pushes to reduce the gradient variance,
and is more effective during the early phase of training when the model’s predictions are poor.

2For example, if raw iteration number for η = 0.05 is 1000 and rescaled iteration number is also 1000, the
rescaled iteration number for η = 0.1 is 1000 then its true iteration number is 500.
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A Appendix

A.1 Diagram

Diagram of thermophoresis flow calculation.

Figure 2: Diagram of mass flow in a generalized inhomogeneous random walk used in the derivation
of the Soret coefficient.

A.2 Proof of Property A.1

Proof. By definition, we have

σ(

M∑
j=1

Wjxj + b1) ≤ σ(

M∑
j=1

Wjxj + b2) , (11)

σ′(

M∑
j=1

Wjxj + b1) ≤ σ′(
M∑
j=1

Wjxj + b2) . (12)

For hv ,

hv(V1,W, b1) = Exg2v(x, V1,W, b1) ,

= Exσ2(

M∑
j=1

Wjxj + b1) ,

≤ Exσ2(

M∑
j=1

Wjxj + b2) ,

= hv(V2,W, b2) .

Similarly, we have

hwi
(V1,W, b1) = ExV 2

1 x
2
iσ
′(

M∑
k=1

Wkxk + b1) ,

≤ ExV 2
2 x

2
iσ
′(

M∑
k=1

Wkxk + b1) ,

≤ ExV 2
2 x

2
iσ
′(

M∑
k=1

Wkxk + b2) ,

= hwi
(V2,W, b2) .

Clearly the inequality also holds for hb.
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A.3 Thermophoresis in Physics

Thermophoresis, also known as the Soret effect, describes particle mass flow in response to both
diffusion and temperature gradient. The effect was first discovered in electrolyte solutions [24, 27, 3].
However it was discovered in other systems such as gases, colloids, and biological fluids and solid
[15, 20].

Thermophoresis typically refers to particle diffusion in a continuum with a temperature gradient. The
non-uniform steady-state density ρ is given by the "Soret Equilibrium" [6, 28, 31],

∇ρ+ ρST∇T = 0 , (13)

where T is temperature and ST is called the Soret coefficient.

In [4], mass flow was calculated by non-equilibrium theory. They considered two types of processes
for entropy balance equation. The reversible process stands for the entropy transfer and the irreversible
process corresponds to the entropy production, or dissipation. The resulting mass flow induced by
diffusion and temperature gradient is found to be

J = −D∇ρ− ρDT∇T , (14)

where D is the Einstein diffusion coefficient and DT is defined as thermal diffusion coefficient.
Comparing the steady state in 13 and setting the flow to be zero, the Soret coefficient is simply

ST =
DT

D
. (15)

The Soret coefficient can be calculated from molecular interaction potentials based on specific
molecular models [31].

A.4 Derivation of Eq. 6

We will show that the flow projecting on the subspace U is always toward negative gi(q). Notice that
although U can be multi-dimensional, the degree of freedom of the particle dynamics is 1 within U
due to the sharing of the ζs, and therefore the mass flow projecting on it is also 1-dimensional. For
each i ∈ U , we define the average flow in this dimension to be the mass that enters qi from q−i minus
the mass from the opposite direction q+i . From Eq. 5 and the assumption that η � 0, only mass close
to qi will move across qi at each step. We let the farthest mass that is likely to flow across qi to be
qi + ∆+

i and qi −∆−i , where ∆+
i and ∆+

i are positive. By definition, we have ∆+
i and ∆−i satisfy

∆+
i = ηgi(q + ∆+) and ∆−i = ηgi(q −∆−), respectively. Notice that if the random walk were

homogeneous, we would have ∆+
i = ∆−i . In our inhomogeneous case, we have ∆+

i ∼ ∆−i ∼ ηgi(q)
up to the first leading order of η, and the next to leading order will be calculated in order to compute
the difference between ∆+

i and ∆−i .

Now we are ready to calculate the mass flow through q. The mass flow projecting onto the subspace
U is calculated by the mass through q from q + ∆+ minus the mass from q−∆− where ∆+

i and
∆−i are as above if i ∈ U and ∆+

i = ∆−i = 0 otherwise. By definition of ∆+
i and ∆−i we also have

∆+
i −∆−i = ηgi(q + ∆+)− ηgi(q−∆−) , (16)

= η

n∑
j∈U

(∆+
j + ∆−j )∂jgi(q) +O(η∆2) , (17)

= 2η2
∑
j∈U

gj(q)∂jgi(q) +O(η3) . (18)
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Therefore the flow3 is

J =− 1

2
|∆+|ρ(q + ∆+) +

1

2
|∆−|ρ(q−∆−) ,

=
1

2
|∆+|[ρ(q−∆−)− ρ(q + ∆+)] +

1

2
(|∆−| − |∆+|)ρ(q−∆−) ,

=− 1

2
|∆+|(|∆+ + ∆−|)ρ(q + ∆+)− ρ(q−∆−)

|∆+ + ∆−|

− 1

2

(|∆+|2 − |∆−|2)

|∆+|+ |∆−|
ρ(q−∆−) ,

≈− 1

2
|∆+|(∆+ + ∆−)∇ρ(q)− 1

2

∑
i∈U (∆+

i + ∆−i )(∆+
i −∆−i )

|∆+|+ |∆−|
ρ(q−∆−) ,

=− η2
√∑
i∈U

g2i (q)
∑
i∈U

gi(q)∂iρ(q)− η2
∑
i,j∈U gi(q)gj(q)∂jgi(q)√∑

i∈U g
2
i (q)

ρ(q) +O(η3) .

where the derivation can be found in Appendix A.4. This can be understood as describe in Diagram 2.

Notice that the mass flow consists of two main terms. The first one represents the diffusion and the
second term corresponds to our goal in this section, which results in thermophoresis. By definition of
function g and Eq. 4, we know that the coefficient of thermophoresis (Soret coefficient), which is
defined as

c− η2
∑
i,j∈U gi(q)gj(q)∂jgi(q)

2
√∑

i∈U g
2
i (q)

(19)

≥ 0, (20)

is negative. This means that there is an effective force exerted on particle at q towards the smaller
variance regime (by analogy, the colder area). The coefficient is proportional to η2.

A.5 Sanity Check of Generalized Theory

If |U | = 1 and gi(q) = gi(qi), the model will reduce to aforementioned physics model and the Soret
coefficient reduces to

c =
η2

2
g(q)g′(q) , (21)

= [(
ηg(q)

2
)2]′ , (22)

≈ ∇T , (23)

where T is the effective temperature in the model. This result is consistent with thermophoresis
model in physics.

A.6 Model and its Training

The dataset is drawn i.i.d. from the data distribution, {(x, y)|(x, y) ∼ D(x, y)}. In this paper we
consider two cases, where either xi ≥ 04 or xi ∼ N (0, 1)5. Here y ∈ Y and we denote the marginal
distribution of y as DY . Finally, we have the loss function L : R× Y→ R+.

We consider optimization via SGD, where the gradient of the loss on a batch of size |B| is given by

∇LB(V,W,b) =
1

|B|

|B|∑
i=1

∇fL(f(xi), yi)∇f(xi). (24)

3More specifically, flow density.
4Usually in convolutional neural networks or intermediate layers.
5Often found when the data are normalized.
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In our two-layer model, we have

∇Vi
f(x) = σ(

M∑
j=1

Wijxj + bi),

∇Wij
f(x) = Vixjσ

′(

M∑
k=1

Wikxk + bi),

∇bif(x) = Viσ
′(

M∑
k=1

Wikxk + bi).

For an input vector x, we call the hidden node i activated when σ′(
∑M
k=1Wikxk + bi) = 1, or

equivalently Wikxk + bi > 0. We thus define the activation rate of the network to be

σ′ =
1

N

N∑
i=1

Exσ′(
M∑
k=1

Wikxk + bi) . (25)

This is an important concept to which we will return.

Henceforth, we drop the index i, since the dynamical equations are invariant with respect to node
index, and write V Vi, WjWij and bbi by abuse of notation. We also denote

hv(V,W, b)Ex[∇V f(x)]2,

hw(V,W, b)Ex[∇Wf(x)]2,

hb(V,W, b)Ex[∇bf(x)]2,

where Ex denotes average over input x. We have the following property for the functions h:

Property A.1. Given W, if V 2
1 ≤ V 2

2 and b1 ≤ b2, we have

hv(V1,W, b1) ≤ hv(V2,W, b2),

hw(V1,W, b1) ≤ hw(V2,W, b2),

hb(V1,W, b1) ≤ hb(V2,W, b2),

σ′(V1,W, b1) ≤ σ′(V2,W, b2).

Here we define a ≤ b as min(b− a) ≥ 0.

It is straightforward to see the following:

Property A.2. When the case of xi ≥ 0 is considered, if V 2
1 ≤ V 2

2 , W1 ≤ W2 and b1 ≤ b2, we
have

hv(V1,W1, b1) ≤ hv(V2,W2, b2),

hw(V1,W2, b1) ≤ hw(V2,W, b2).

hb(V1,W2, b1) ≤ hb(V2,W, b2),

σ′(V1,W, b1) ≤ σ′(V2,W, b2).

In our analysis, we focus for simplicity on binary classification tasks, where the loss is typically
binary cross-entropy: L(f, y) = y ln p(f) + (1− y) ln(1− p(f)) and p(f) = 1/(1 + exp(f)). We
thus have

∇fL(f, y) = p(f)− y. (26)

Substituting into Eq. 24, the mini-batch gradient becomes

∇LB(V,W,b) =
1

|B|

|B|∑
i=1

(pi − yi)∇f(xi). (27)

Our results, however, can be generalized to arbitrary loss.

10



A.7 Derivation of Thermophoresis Flow in Deep Learning

The gradient that dominates model training is defined in 27. Because training samples are i.i.d., the
variance of the gradient is

var
[
∇LB(V,W,b)

]
= var

[
1

|B|

|B|∑
i=1

(pi − yi)∇f(xi)

]
, (28)

=
1

|B|
var
[
(p− y)∇f(x)

]
(29)

The gradient has two components: p− y corresponding to γ in equation 1 and∇f(x) corresponding
to f(q, ξ). We assume that the dataset is unbiased, in which case P (y = 0) = P (y = 1) = 0.5 and
P (p− y = a) = P (p− y = −a), and that p− y and ∇f(x) are independent in the first period of
training given that the dataset is complex and can’t be learned by linear model. It is straightforward
to see that it satisfies Eq. 2.

Next we will show that V and b are always in the set of U defined in the previous section. First, if
Vi ≥ 0, we have

∇Vi
f(x) = σ(

M∑
j=1

Wijxj + bi), (30)

≥ 0. (31)
and

∇bif(x) = Viσ
′(

M∑
k=1

Wikxk + bi), (32)

≥ 0. (33)
Since we also have Property A.1, the conditions in Eq. 4 are satisfied. If Vi < 0, we consider a
coordinate transform that maps Vi to V̄i = −Vi. It is easy to show that Eq. 4 is again satisfied after
this transform.

Next we consider W. The gradient of f with respect to Wij is the product of ∇bif and xi. If xi
for i = 1, . . . ,M are always ≥ 0, which is usually the case in convolutional neural networks, it is
easy to show that Wij is also in set U and smaller Wij corresponds to smaller variance according to
Property A.2. If xi ∼ N (0, 1), on the other hand, W is excluded from U .

For the following, we consider the case where xi ∼ N (0, 1), and

gV (Vi,Wi, bi) =
1√
|B|

√√√√∫ [(p− y)σ(

M∑
j=1

Wijxj + bi)
]2
dµ(x, y) , (34)

=
1√
|B|

φ1(Wi, bi) , (35)

gb(Vi,Wi, bi) =
1√
|B|

√√√√∫ [(p− y)Viσ′(

M∑
j=1

Wijxj + bi)
]2
dµ(x, y) , (36)

=
Vi√
|B|

φ2(Wi, bi) , (37)

where g is defined as in 3. Inserting these into Eq. 6, we find the thermophoresis flow density to be

Jt =
η2

|B|
ψ , (38)

where ψ =
Viφ1φ

2
2+Viφ1φ2∂bφ1+V

3φ2
2∂bφ2

2
√
φ2
1+V

2
i φ

2
2

ρ. This flow biases the model toward smaller bi and smaller

Vi
6 with the strength proportional to squared learning rate η2 and inverse batch size. It is also noted

6larger Vi if Vi < 0.
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that the function ψ can be bounded by a function multiplying with a scalar
∫

(p − y)2µ(x, y). It
is clear that this scalar measures the L-2 distance between model predictions and sample labels
and decreases on average during training as prediction getting better. Thus thermophoresis is more
effective during the early phase of training.

A.8 Sparsity, Weight Norm and Their Relation to Generalization

In this section, we demonstrate how sparsity is related to the Hessian norm. We first denote the
model’s probabilistic prediction on a C-class classification as

pµk =
exp zµk∑C
l=1 exp zµl

, (39)

where k is the probability for label k, µ is the data index, z is model output and C is the total number
of categories. We consider cross entropy loss of the form

L(w) = − 1

B

B∑
µ=1

C∑
k=1

yµk log pµk , (40)

where y is sample labels and p stands for model probability prediction, similar to the previous
definition. We denote the loss for individual sample to be

Lµ = −
C∑
k=1

yµk log pµk . (41)

The gradient with respect to the model output is

(∇zLµ)k = −yµk + pµk . (42)

And it is easy to show that the Hessian with respect to output is

(∇2
zL

µ)kl = δklp
µ
k − p

µ
kp
µ
l . (43)

Therefore the Hessian with respect to model parameters is

Hµ = ∇2
wL(z(w)) , (44)

= ∇w(∇zL ∗ ∇wz) , (45)

= (∇wz)(∇2
zL)(∇wz) +∇zL∇2

wz , (46)

≈ (∇wzµ)ij(∇2
zL

µ)jk(∇wzµ)kl . (47)

To study the spectrum of the Hessian, we calculate the trace and have

Tr(Hµ) ≈ Tr((∇wzµ)(∇2
zL

µ)(∇wzµ)T ) , (48)

= Tr((∇2
zL

µ)(∇wzµ)T (∇wzµ)) , (49)
= Tr(P ∗K) , (50)
≤ Tr(P ) ∗ Tr(K) , (51)

where

P = ∇2
zL

µ , (52)

Kµν =
∑
l

∑
ij

(
∂zµ
∂wlij

)(
∂zν
∂wlij

) . (53)

The trace of K therefore can be calculated by chain rule,

Tr(K) =
∑
µ

∑
l

∑
ij

(
∂zµ
∂wlij

)2 , (54)

=
∑
l

(
∑
iu

(δli[µ])2
∑
j

(hl−1j )2) , (55)
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where δ and h carry backward and forward information respectively. They are defined as

δli[µ] = δµnL
WL
nLnL−1

σ′...W l+1
nl+2i

σ′ , (56)

hl−1j = σW l−1
jnl

σ...Wn1n0
xn0

. (57)

It can further be shown that∑
iu

(δli[µ])2 =
∑
iu

δµnL
WL
nLnL−1

σ′ . . .W l+1
nl+2i

σ′ ∗ σ′W l+1
inl+2

. . . σ′WL
nL−1nL

δnLµ , (58)

= Tr(WLσ′ . . .W l+1σ′σ′W l+1 . . . σ′W̄L) , (59)

≤ Tr(σ′WLWLσ′)Tr(σ′WL−1WL−1σ′) . . . T r(σ′W l+1W l+1σ′) , (60)

as well as ∑
j

(hl−1j )2 ≤ ‖X‖2Tr(W 1σσW 1)Tr(W 2σσW 2)...T r(W l−1σσW l−1) . (61)

Together with the previous calculations and the definition of K, we have

Tr(K) ≤ ‖X‖2
∑
l

Πl−1
n=1Tr(W

nσσWn)ΠL
n=l+1Tr(σ

′WnWnσ′) , (62)

= ‖X‖2
∑
l

Πl−1
n=1‖σWn‖2FΠL

n=l+1‖Wnσ′‖2F . (63)

Finally, we derive an upper bound for the trace of the Hessian,

Tr(Hµ) ≤ Tr(P )‖X‖2
∑
l

Πl−1
n=1‖σWn‖2FΠL

n=l+1‖Wnσ′‖2F . (64)

Notice that activation rate and weight norm control the magnitude of ‖σWn‖2F and ‖Wnσ′‖2F .
Therefore smaller activation rate and weight norm lead to tiger upper bound of the Hessian trace and
thus indicate smaller matrix norm. This analysis connects sparsity with Hessian norm, Hessian trace
specifically.
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