

A Gaussian Process Library for Molecules

- FlowMO is a Gaussian Process library for molecules
- Representations include SMILES and ECFP6 fingerprints
- Bespoke kernels for these representations include string kernels for SMILES and the Tanimoto kernel for fingerprints.

Figure 1: Molecular Representations in FlowMO.

Regression Benchmark

- We benchmark regression performance on three small molecular datasets: The Photoswitch dataset [1], ESOL [2] and FreeSolv [3].
- Compare against the best reported model from the MoleculeNet benchmark in addition to recently reported SOTA models.
- Achieve best performance on the photoswitch dataset

Table 1:RMSE of the models across the three datasets, with the scores of the best GP model and best overall model highlighted.

	Photoswitch	ESOL	FreeSolv
SSK GP (SMILES)	26.0 ± 3.6	0.65 ± 0.04	1.29 ± 0.22
TK GP (Fingerprints)	22.6 ± 4.0	0.98 ± 0.08	1.85 ± 0.10
ANP	27.2 ± 3.7	1.32 ± 0.13	2.65 ± 0.47
BNN	25.5 ± 5.0	1.01 ± 0.11	1.92 ± 0.20
MoleculeNet	22.0 ± 3.5	$\textbf{0.58}\pm0.03$	1.15 ± 0.02
SMILES-X	_	0.70 ± 0.05	1.14 ± 0.17
SMILES-X (Augm)	_	0.57 ± 0.07	0.81 ± 0.22

Gaussian Process Molecular Property Prediction with FlowMO

Henry Moss*, Ryan-Rhys Griffiths*

Uncertainty Calibration

To analyse the calibration achieved by the predictive distributions provided by the probabilistic models (only the GPs, BNN and ANP), we define a calibration score function

$$C(q) = \frac{1}{|\mathcal{T}|} \sum_{m \in \mathcal{T}} \left[1\left(\left| \frac{\hat{y}(m) - y(m)}{\hat{\sigma}(m)} \right| < \Phi^{-1}\left(\frac{1+q}{2} \right) \right) \right]$$

based on cross-validatory predictive p-values. $y(m), \hat{y}(m)$ and $\hat{\sigma}(m)$ represent true values, predictive means and predictive standard deviations for each test molecule $m \in \mathcal{T}$, and Φ^{-1} is the inverse of the standard Gaussian cumulative distribution function. The indicator 1 is activated only when the true value is contained in the model's q * 100% confidence interval. Therefore, perfect calibration at the q^{th} quantile corresponds to C(q) =q. C(q) > q indicates under-confidence through overly large uncertainty estimates (limiting the strength of conclusions that can be drawn from the model) whereas C(q) < q denotes overconfidence (leading to reckless decisions downstream). We plot C(q) for our probabilistic models in Figure 2.

Uncertainty Calibration Benchmark

String kernel GP demonstrates superior calibration across all tasks.

Figure 2: Uncertainty Calibration on the FreeSolv Dataset.

Uncertainty Calibration Benchmark

Figure 4: Uncertainty Calibration on the Photoswitch Dataset.

We plan to extend the library to cater for graph representations of molecules by making use of graph kernel GPs.

- Sciences, 2004.
- Computer-Aided Molecular Design, 2014.

UNIVERSITY OF CAMBRIDGE

Figure 3: Uncertainty Calibration on the ESOL Dataset.

Future Work

References

[1] A. R. Thawani, R.-R. Griffiths, A. Jamasb, A. Bourached, P. Jones, W. McCorkindale, A. A. Aldrick, and A. A.Lee. The photoswitch dataset: A molecular machine learning benchmark for the advancement of synthetic chemistry. arXiv preprint arXiv:2008.03226, 2020

[2] J. S. Delaney. ESOL: estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer

[3] D. L. Mobley and J. P. Guthrie. FreeSolv: a database of experimental and calculated hydration free energies, with input files. Journal of