Graph neural network for 3D node classification in
scintillator-based neutrino detectors

Saul Alonso-Monsalve* DanaDouga® César Jesus-Valls®* Thorsten Lux*  Sebastian Pina-Otey™>
Federico Sdnchez® Davide Sgalaberna® Leigh H. Whitehead’

'CERN, The European Organization for Nuclear Research
?Universidad Carlos Il de Madrid
SUniversity of Geneva
*IFAE, Institut de Fisica d’Altes Energies
>Aplicaciones en Informatica Avanzada (AIA)
°ETH Zurich

’University of Cambridge

Introduction Problem description Results (Il)

¢ Finely-segmented plastic To accurately reconstruct neutrino interactions, it is crucial to be able to Comparison of the results of a
scintillators aim to resolve and classify each voxel as one of the three types: conventional charge cut with
reliably identify short particle 1. Track, a real energy deposit from a charged particle. those of the GNN.
tracks complex interactions. 2.Crosstalk, a real energy deposit from light-leakage between GNN

® The detector response to a neighboring cubes. Track Other
charged particle isread outinto 3 Ghost, fake signals coming from the ambiguity when matching the Efficiency 94% 96%
three orthogonal 2D projections. three 2D views into 3D. Purity ~ 96% 95%

o Diff £t £ hit built Charge Cut

ifferent types of hits are rebui Tack Other
when reconstructing the 3D Efficiency 93% 80%
event, introducing non-physical " 55 Purity  80% 91%

Table: Mean efficiencies and purities of
voxel classification for the GNN and a
Y simple charge cut.

Conclusion

e The neural network was able to

entities that can hinder the -

reconstruction process.

e An approach of utilizing deep L

learning is proposed to perform
the classification of 3D hits to

provide clean tracks for event 110 s

identify ambiguities and

track

;Loc:tta'k scintillation light leakage

Case Study between neighboring active
. . scintillator detector volumes.
The Super Fine-Grained Detector  [JAYe]e]geF:Telg , ,
e |t also recognizes real signatures

reconstruction. 150

(Su;.)erFGD). A graph neural network (GNN) inspired by the GraphSAGE™* algorithm is left by particles with efficiencies
* Will be used to upgrade th.e near used to classify individual voxels' in SuperFGD events. and purities in the range of
detector of the T2K experiment. *GraphSAGE (arXiv:1706.02216) is a technigue that leverages the features of graph 94-96% per event, with a clear
e 2 million plastic scintillator nodes to generat.e efficient rep.re.sentations on previously unseen samples by learning improvement with respect to
cubes, each 1x1x 1 cm? in size. aggregator functions from training nodes. o
| less sophisticated methods.
e Provides three orthogonal 2D Results (1)

projections of each event.
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e Two datasets were generated to train the 5 Track Crosstalk Ghost Track Crosstalk Ghost crosstalk in scintillator-based neutrino
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o Adam is used as the optimizer, with a Event th?lency 924% 94% 87% th?lency 95% 93% 88%
mini-batch size of 32, and an initial learning Purity 96%  90% 92% Purity 96%  91% 92% 'Each detector voxel is represented as a node
rate of 0.001 (divided by 10 when the error Table: Mean efficiencies and purities of voxel classification, calculated for the whole in a graph, and each node consists of a list of
lat ) ey .. . . input variables called features that describe the
plateaus). sample (per voxel) and as a mean of the event-by-event efficiencies and purities (per

physical properties of the detected signal.
e The model has a total of 105,347 parameters. event).
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