Graph neural network for 3D node classification in scintillator-based neutrino detectors

Saúl Alonso-Monsalve^{1,2} Dana Douqa³ César Jesús-Valls⁴ Thorsten Lux⁴ Sebastian Pina-Otey^{4,5} Federico Sánchez³ Davide Sgalaberna⁶ Leigh H. Whitehead⁷ ¹CERN, The European Organization for Nuclear Research ²Universidad Carlos III de Madrid ³University of Geneva ⁴IFAE, Institut de Física d'Altes Energies ⁵Aplicaciones en Informática Avanzada (AIA) ⁶ETH Zurich

⁷University of Cambridge

Introduction

- Finely-segmented plastic scintillators aim to resolve and reliably identify short particle tracks complex interactions.
- The detector response to a charged particle is read out into three orthogonal 2D projections.
- Different types of hits are rebuilt when reconstructing the 3D event, introducing non-physical entities that can hinder the reconstruction process.
- An approach of utilizing deep

To accurately reconstruct neutrino interactions, it is crucial to be able to classify each voxel as one of the three types:

1. **Track**, a real energy deposit from a charged particle.

Problem description

- 2. Crosstalk, a real energy deposit from light-leakage between neighboring cubes.
- 3. Ghost, fake signals coming from the ambiguity when matching the three 2D views into 3D.

Results (II)

Comparison of the results of a conventional charge cut with those of the GNN.

GNN							
	Track	Other					
Efficiency	94%	96%					
Purity	96%	95%					
Charge Cut							
	Track	Other					
Efficiency	93%	80%					
Purity	80%	91%					

Table: Mean efficiencies and purities of voxel classification for the GNN and a simple charge cut.

learning is proposed to perform the classification of 3D hits to provide clean tracks for event reconstruction.

Case Study

The Super Fine-Grained Detector (SuperFGD).

- Will be used to upgrade the near detector of the T2K experiment.
- 2 million plastic scintillator cubes, each $1 \times 1 \times 1$ cm³ in size.
- Provides three orthogonal 2D projections of each event.
- The light yield measurements in the three 2D views are matched together to form 3D objects,

Approach

- A graph neural network (GNN) inspired by the GraphSAGE^{*} algorithm is used to classify individual voxels¹ in SuperFGD events.
- * GraphSAGE (arXiv:1706.02216) is a technique that leverages the features of graph nodes to generate efficient representations on previously unseen samples by learning aggregator functions from training nodes.

Results (I)

		G	Fraining		P-Bomb Training				
GENIE Testing	Per Voxel		Track	Crosstalk	Ghost		Track	Crosstalk	Ghost
		Efficiency	93%	90%	84%	Efficiency	93%	89%	80%
		Purity	93%	87%	91%	Purity	91%	86%	89%
	Dor		Track	Crosstalk	Ghost		Track	Crosstalk	Ghost
	Event	Efficiency	94%	94%	88%	Efficiency	94%	93%	88%
		Purity	96%	91%	92%	Purity	95%	91%	91%
	Dor		Track	Crosstalk	Ghost		Track	Crosstalk	Ghost
	Per	Efficiency	94%	93%	87%	Efficiency	95%	93%	88%
P-Bomb	voxei	Purity	95%	90%	92%	Purity	95%	91%	92%
Testing	Dor		Track	Crosstalk	Ghost		Track	Crosstalk	Ghost
	FU	Efficiency	94%	94%	87%	Efficiency	95%	93%	88%
	Event	Purity	96%	90%	92%	Purity	96%	91%	92%

Conclusion

• The neural network was able to identify ambiguities and scintillation light leakage between neighboring active scintillator detector volumes. • It also recognizes real signatures left by particles with efficiencies and purities in the range of 94-96% per event, with a clear improvement with respect to less sophisticated methods.

Reference

S. Alonso-Monsalve, D. Douqa, C. Jesús-Valls, T. Lux, S. Pina-Otey, F. Sánchez, D. Sgalaberna, and L. H. Whitehead.

referred to as voxels.

Training details

- Two datasets were generated to train the network: GENIE and P-Bomb.
- The network was trained for 50 epochs using Python 3.6.9 and PyTorch 1.3.0 on an NVIDIA RTX 2080 Ti GPU.
- Adam is used as the optimizer, with a mini-batch size of 32, and an initial learning rate of 0.001 (divided by 10 when the error plateaus).
- The model has a total of 105,347 parameters.

Table: Mean efficiencies and purities of voxel classification, calculated for the whole sample (per voxel) and as a mean of the event-by-event efficiencies and purities (per event).

Graph neural network for 3D classification of ambiguities and optical

crosstalk in scintillator-based neutrino detectors.

arXiv e-prints, September 2020. arXiv:2009.00688.

¹Each detector voxel is represented as a node in a graph, and each node consists of a list of input variables called features that describe the physical properties of the detected signal.