
Learning summary features of time series for
likelihood free inference

Pedro L. C. Rodrigues, Alexandre Gramfort
Parietal team, Inria, Palaiseau, France

pedro.rodrigues@inria.fr

Abstract

There has been an increasing interest from the scientific community in using
likelihood-free inference (LFI) to determine which parameters of a given simulator
model could best describe a set of experimental data. Despite exciting recent
results and a wide range of possible applications, an important bottleneck of LFI
when applied to time series data is the necessity of defining a set of summary
features, often hand-tailored based on domain knowledge. In this work, we present
a data-driven strategy for automatically learning summary features from univariate
time series and apply it to signals generated from autoregressive–moving-average
(ARMA) models and the Van der Pol Oscillator. Our results indicate that learning
summary features from data can compete and even outperform LFI methods based
on hand-crafted values such as autocorrelation coefficients even in the linear case.

1 Introduction

Bayesian inference on modern complex simulator models is in general a difficult task because
the likelihood function of the model’s output is often difficult or impossible to obtain. A modern
approach for bypassing such an obstacle is to use likelihood-free inference methods, in which a
flexible function (e.g. a neural network) learns how to approximate the posterior distribution based on
simulations over different parameters. This approach is also called simulation-based inference (SBI)
and we refer the reader to [5] for a review on the topic and the Python package sbi for ready-to-use
implementations [18].

A common step in SBI is to reduce the dimensionality of the observed data before approximating
the posterior distribution. This is particularly relevant when working with time series data, for
which descriptions based on a few meaningful parameters is standard practice. For instance, the
autocorrelation function is a sufficient statistic for signals generated by Gaussian autoregressive–
moving-average (ARMA) models and is, therefore, the ideal summary feature extractor. For signals
generated by complex non-linear simulators, such as the Hodgkin-Huxley or Lotka-Volterra models,
the summary features are usually chosen based on previous domain knowledge [15]. In this work, we
propose a data-driven strategy that avoids tailoring summary statistics for each application.

Automatically learning summary features is a recurring theme in the SBI literature. Fearnhead et
al. [8] present a regression scheme that approximates the posterior mean via a linear model and
uses it as summary features for learning the posterior distribution. Partially exchangeable networks
(PEN) [19] explores invariances in time series to learn a set of summary features with the same loss
function as [8] and then approximates the posterior distribution using them. An important difference
of our work is that we learn the summary statistics and the posterior distribution jointly, as done
in [11] but with a different summary feature extractor.

In what follows, we present the architecture of our summary feature extractor and show its per-
formance in approximating posterior distributions of linear and non-linear stochastic time series
models.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.

2 Methods

The basic setup of Bayesian methods for SBI consists of a prior distribution p(θ) over the parameters
and a stochastic simulator whose output for a given θi is xi ∼ p(x|θi). Our goal is to determine the
posterior distribution of θ given an observed simulator output x0 ∈ Rns , which we denote p(θ|x0).

2.1 Posterior estimation with adaptive summary features

We define the summary feature extractor as a function fλ : Rns → Rnf whose parameters λ can be
learned from the data and use a probability density estimator qφ parametrized by φ to approximate
p(θ|x). We have, therefore, that p(θ|x0) ≈ qφ(θ|fλ(x0)).

The parameters φ and λ are determined by jointly minimizing the Kullback-Leiber divergence
between the true posterior distribution and our approximation, which can be rewritten as

L(φ,λ) = E(x,θ)∼p(x,θ)

[
− log(qφ(θ|fλ(x)))

]
. (1)

The standard approach for minimizing (1) is to generate a set of paired samples (θi,xi) ∼ p(θ,x)
and use stochastic gradient descent to obtain a minimizer. However, we have observed superior results
with sequential neural posterior estimation (SNPE-C) [11]. It consists of anR-step procedure in which
N paired samples are generated per iteration and used to obtain a sequence of approximations of
p(θ|x). SNPE-C’s particularity is that the data points generated on a given round r are sampled from
a posterior approximation obtained on round r − 1 fixed with x = x0. This leads to approximations
which are targeted to better represent the posterior distribution associated with the observed data
point. As a result, the approximation of p(θ|x0) after R rounds is often better than with a single
round and N ×R simulations.

In all experiments below, qφ is a normalizing flow [14] with an autoregressive architecture imple-
mented via the masked autoencoder for distribution estimation (MADE) [10]. We follow the same
setup from [7] and [11] for LFI problems, stackings five MADEs, each with two hidden layers of
50 units, and a standard normal base distribution for the normalizing flow. This choice provides a
sufficiently flexible function capable of approximating complex posterior distributions. We refer the
reader to [13] for more information on the different types of normalizing flows. We run SNPE-C with
R = 10 rounds and N = 5000 simulations per round.

2.2 The YuleNet

The summary feature extractor that we propose is based on a previously published neural network
architecture presented in [4]. For an input time series realization x ∈ Rns (ns > 256), we get an
nf -dimensional feature vector given by

fλ(x) = g3
(
g2
(
g1(x)

))
∈ Rnf , (2)

where g1, g2, and g3 are functions with trainable parameters,

g1 : 1D CNN (input channels: 1, output channels: 8, kernel size: 64, stride: 1, padding: 32)
followed by a ReLU activation function and an average pooling (kernel size: 16)

g2 : 1D CNN (input channels: 8, output channels: 8, kernel size: 64, stride: 1, padding: 32)
followed by a ReLU activation function and an average pooling (kernel size: bns/256c)

g3 : 50%-dropout layer followed by a linear transformation with nf -dimensional output and a
ReLU activation function.

We name our summary feature extractor YuleNet in reference to the widely known Yule-Walker
equations from time series analysis [6]. A YuleNet contains 4624 + nf (1 + ns/32) trainable
parameters in total. In all of the examples considered in this paper, we have ns = 4096 and nf = 5,
leading to 5269 parameters to optimize.

2.3 Examples on linear time series processes

We consider two examples on discrete-time series generated by stochastic linear models. Despite
their simplicity, these models are good benchmarks for validating our approach since the posterior
distributions are known analytically.

2

Our first example is an auto-regressive process of order two parametrized by k1, k2 ∈ (−1,+1),

x(n) = (k1 + k1k2)x(n− 1) + |k2|x(n− 2) + u(n) , (3)

where u is a zero-mean discrete-time Gaussian white noise process with unit variance. Note that the
absolute value taken over k2 leads to a posterior distribution θ = (k1, k2) which has two modes. We
call this example bimodal-AR(2). Our second example is a moving-average process of order two,
MA(2):

x(n) = (k1 + k1k2)ε(n− 1) + k2ε(n− 2) + u(n) , (4)
with k1, k2, and u defined as in (3). Note that the parametrization in terms of k1, k2 ensures that
bimodal-AR(2) is a stationary process and that MA(2) is an invertible process [3].

In both examples, we use SNPE-C to approximate the posterior distribution p(θ|x0) with x0 gener-
ated by θ0 = (k1, k2) = (0.5,−0.75). We consider an uniform prior distribution for the parameters
k1, k2 ∼ U(−1,+1).

2.4 The Van der Pol oscillator

The Van der Pol oscillator (VdPOsc) is a non-linear system widely known in the study of chaotic
systems. It has been used to decribe different phenomena in physics, biology, and electrical engineer-
ing [17]. In this example, we consider a stochastic version driven by a random process [1]. For a
continuous time series x(t), we have

ẍ = ε(1− x2)ẋ− x+ σẇ , (5)

where ε > 0 and σ > 0, and ẇ(t) is a Gaussian white noise of zero mean and unit variance.

We solve (5) using a Euler-Maruyama solver for Ito equations with ∆t = 0.01s and then downsample
the time series to a sampling period of Ts = 0.05s. The initial conditions are fixed to (x(0), ẋ(0)) =

(1.0, 2.0). We use SNPE-C to approximate the posterior distribution p(θ|x(i)
0) with θ = (ε, σ) in

five different cases:

θ
(1)
0 = (2.5, 1.0) θ

(3)
0 = (1.0, 1.5) θ

(5)
0 = (4.0, 0.5) θ

(2)
0 = (1.0, 0.5) θ

(4)
0 = (4.0, 1.5)

We consider a prior distribution for ε ∼ U(0, 5) and σ ∼ U(0, 2).

3 Results and discussion

Examples with linear time series processes. We assess the quality of the results with SNPE-C via
the Wasserstein distance [16] calculated over samples from the analytic and approximated posteriors
of bimodal-AR(2) and MA(2). We compare the results obtained when the summary features are
extracted via the YuleNet architecture to when they are estimates of the autocorrelations of the
time series (autocorr). Note that because u is a Gaussian white noise in both (3) and (4), the
autocorrelations are sufficient statistics, making them the ideal benchmark. We also consider a case
where fλ is a PEN with the same setup from [19] in two situations: when its parameters are learned
within the SNPE-C procedure (PEN), and when they are learned separately on 104 simulated samples
and then applied to a rejection-sample ABC procedure (PEN+ABC) as done in [19].

Figure 1 shows that the Wasserstein distances of all methods decrease when the simulation budget
increases (simulation budget = round number × simulations per round). In bimodal-AR(2), the
performances of autocorr, YuleNet, and PEN are very similar, whereas PEN+ABC is slightly worse.
It is worth mentioning that PEN has twice more parameters as compared to YuleNet (10285 versus
5269) and requires ≈ 27.106 multiply-accumulate operations (MACs) per forward computation,
against ≈ 3.106 for YuleNet. In practice, we have observed that the evaluations of PENs are between
three and five times longer in CPU time than with YuleNet. In MA(2), we observe that YuleNet
and PEN are uniformly better than autocorr, indicating that the learned summary features in this
case are better representations of the time series for the inference procedure than the estimated
autocorrelations. This can be explained by the highly complex relation between the theoretical values
of the autocorrelations of MA(2) and parameters k1 and k2, which makes the model inversion via
SNPE-C very difficult (see Appendix 5 for details).

Results on the Van der Pol oscillator. We are not aware of any direct method for obtaining samples
of the true posterior distribution of VdPOsc. Therefore, we base our discussion on the inspection of

3

1.104 2.104 3.104 4.104 5.104

simulation budget

0.0

0.1

0.2

0.3

0.4

0.5

W
as

se
rs

te
in

di
st

an
ce

bimodal-AR(2)

1.104 2.104 3.104 4.104 5.104

simulation budget

MA(2)

autocorr

YuleNet

PEN

PEN+ABC

Figure 1: Wasserstein distance be-
tween the estimated posterior and
the analytical posterior distribution
for the examples on linear time se-
ries processes. The distances have
been averaged over 100 batches
with 100 samples from each pos-
terior distribution (all calculations
done with the POT package [9])

0.0 1.0 2.0 3.0 4.0 5.0

ε

0.0

0.5

1.0

1.5

2.0

σ

θ
(1)
0

autocorr

1.0 2.0 3.0 4.0 5.0

ε

θ
(1)
0

θ
(2)
0

θ
(3)
0

θ
(4)
0

θ
(5)
0

YuleNet

1 2 3 4

ε

0.5

1.0

1.5

σ

ns = 512

θ
(1)
0

1 2 3 4

ε

0.5

1.0

1.5

σ

ns = 1024

θ
(1)
0

1 2 3 4

ε

0.5

1.0

1.5

σ

ns = 2048

θ
(1)
0

1 2 3 4

ε

0.5

1.0

1.5

σ

ns = 4096

θ
(1)
0

Figure 2: Results on the Van der Pol oscillator after ten SNPE-C rounds. The left plot portrays a 2D
histogram of 104 samples from the posterior distribution approximated with autocorr for ground truth
parameter θ(1)0 . It shows that autocorrelations are not adequate summary statistics for this example.
The center plot shares the y-axis of the left plot and overlays the histograms from approximations
estimated with YuleNet on five different ground truth parameters (104 samples for each case). We
see how the shape of the posterior distribution varies for different choices of ground truth parameter
θ
(i)
0 . The four small plots on the right demonstrate that the dispersion of the samples with YuleNet

decrease when longer time series are used in the inference procedure.

2D histograms of the samples from each approximation to p(θ|x0). We consider results only for
autocorr and YuleNet.

The left and center plots of Figure 2 show that the posterior distribution approximated with autocorr
generates samples which are very far from the ground truth parameter, whereas YuleNet yields sharp
posterior distributions around the true parameter. This indicates that using only autocorrelations as
summary features for a non-linear model such as VdPOsc is not sufficient to capture its statistical
properties and that the flexibility of YuleNet allows for a better representation of the time series. We
also observe that the dispersions of the samples of the posterior distributions obtained for YuleNet
vary for different ground truth parameters: the standard deviation σ of the input Gaussian white
noise has the usual effect of increasing the variance of the posterior distribution, and the ‘degree’ of
non-linearity of VdPOsc, modulated by ε, shows that when the system tends to an harmonic oscillator
(ε→ 0) the posterior distribution has less variance. The four small plots on the right side of Figure 2
display how the dispersion of the samples from the posterior approximation vary for different lengths
of the observed time series. They show that our approximate posterior has the expected behavior of
getting sharper when longer observations are available.

4 Conclusion

Our experiments have demonstrated that data-driven summary features of time series learnt for SBI
can match the performance of sufficient statistics in the Gaussian linear case, while being significantly
better on a non-linear stochastic model. The YuleNet architecture that we present, which is simply a

4

well calibrated one-dimensional CNN, learns adequate summary features for inference while using
less parameters and requiring less computational power (measured via MACs) to train than another
proposal from the literature. Using the SNPE-C procedure to minimize (1) and a normalizing flow
for qφ has given satisfactory results, but other options are possible too, such as using MDNs [2] to
approximate probability distributions and employing other LFI strategies as in [15] and [12].

Broader Impact

Inferring the laws and parameters that drive physical systems has been a long standing issue in
physics, and more broadly across all experimental sciences. In this work, we have presented a method
for automatically determining summary statistics from experimental time series and used them with a
LFI method to obtain the parameters of a simulator model. Our main contribution is in easing the
burden on specialists interested in applying LFI in practice, since the tailoring of summary statistics
for each application is often time consuming.

References
[1] Roman Belousov, Florian Berger, and A. J. Hudspeth. Volterra-series approach to stochastic

nonlinear dynamics: Linear response of the van der pol oscillator driven by white noise. Phys.
Rev. E, 102:032209, Sep 2020.

[2] Christopher M. Bishop. Mixture density networks. Technical report, 1994.

[3] George.E.P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, 1976.

[4] Stanislas Chambon, Mathieu N. Galtier, Pierrick J. Arnal, Gilles Wainrib, and Alexandre
Gramfort. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multi-
variate and Multimodal Time Series. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 26(4):758–769, 2018.

[5] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 2020.

[6] James Durbin. The fitting of time-series models. Review of the Int. statistical institute, pages
233–244, 1960.

[7] Conor Durkan, Iain Murray, and George Papamakarios. On contrastive learning for likelihood-
free inference, 2020.

[8] Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate bayesian
computation: semi-automatic approximate bayesian computation. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology), 74(3):419–474, 2012.

[9] Rémi Flamary and Nicolas Courty. POT Python Optimal Transport library, 2017.

[10] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoen-
coder for Distribution Estimation. volume 37 of Proceedings of Machine Learning Research,
pages 881–889, Lille, France, 07–09 Jul 2015. PMLR.

[11] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. volume 97 of Proceedings of Machine Learning Research, pages
2404–2414, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[12] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized
approximate ratio estimators, 2020.

[13] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference, 2019.

5

[14] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 2338–2347.
Curran Associates, Inc., 2017.

[15] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. volume 89 of Proceedings of Machine
Learning Research, pages 837–848. PMLR, 16–18 Apr 2019.

[16] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data
science. Foundations and Trends R© in Machine Learning, 11(5-6):355–607, 2019.

[17] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry and Engineering. Westview Press, 2000.

[18] Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan,
Pedro J. Gonçalves, David S. Greenberg, and Jakob H. Macke. sbi: A toolkit for simulation-
based inference. Journal of Open Source Software, 5(52):2505, 2020.

[19] Samuel Wiqvist, Pierre-Alexandre Mattei, Umberto Picchini, and Jes Frellsen. Partially ex-
changeable networks and architectures for learning summary statistics in approximate Bayesian
computation. volume 97 of Proceedings of Machine Learning Research, pages 6798–6807,
Long Beach, California, USA, 09–15 Jun 2019. PMLR.

5 Appendix

The auto-correlation function for bimodal-AR(2) in terms of (k1, k2) is

r(1) =
k1 + k1|k2|
1− |k2|

, r(2) = |k2|+
(k1 + k1|k2|)2

1− |k2|
, (6)

and r(s) = a1r(s− 1) + a2r(s− 2),∀s > 2, s ∈ Z. The auto-correlation function for MA(2) is

r(1) =
(k1 + k1k2)(1 + k2)

1 + (k1 + k1k2)2 + k2
2

and r(2) =
k2

1 + (k1 + k1k2)2 + k2
2

, (7)

and r(s) = 0, ∀s > 2, s ∈ Z. When using autocorrelations as summary features, the SNPE-C procedure learns
to invert these relations and obtain the values of k1 and k2 in terms of r(k).

6

	Introduction
	Methods
	Posterior estimation with adaptive summary features
	The YuleNet
	Examples on linear time series processes
	The Van der Pol oscillator

	Results and discussion
	Conclusion
	Appendix

