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« MeerLICHT is an optical wide-field telescope that is

operated robotically.
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Artefacts: e.g. other stars, streaks, ghosts
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of latent classes (the candidates entities), generating
patterns of association in the characteristics.

Classify source 820408 : Aladin Image

: b. Thresholding Method ,
e T : s -4 \
2-. CWVMM TVWDMW We assign a probability P. (Real) and-P (Bogus) to each
= . vetted candidate as follows:
* We construct a large representative training dataset (5000 S - n(R) n(B)
candidates) for the Real-Bogus challenge. ' UL 2 2210 X P(Real) = Ok P(Bogus) = o)
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« Manually vetting a selection of transients, using a web-
interface, known as MeerVETTING. o
 Each ;:andidate iIs vetted by 10 volunteers, who are. shown
three images (N, R, D) during vetting. .
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4. MeexrCRAB Models:

 During t;aining, the binary cross-entropy loss
function, Adam optimizer with a low Ir = 0.0002 & a
batch-size of 64 were used.

5. Resulty & Analysis

Effects of noisy data labelling on performance: As the
threshold increased from T8 to T10, the accuracy of
the model increases from 0.988 to 0.998. However,
with L,,,, method, we note a significant drop in
accuracy. . Comg e

« We then split our data into 50% training, 25%
- validation and 25% testing.

* As input to the MeerCRAB models, we c;c.>pped the
images from centre to a size of (30 x 30).

1
FC5 + Softmax

Methods of labelling Precision Recall Accuracy MCC
MeerCRAB1

Input Images: Focusing on T9 and MeerCRAB3, the

NRD input yields the best performance model with an
accuracy of 99.2%. -

Network architectures: With deeper networks
(MeerCRAB2 and MeerCRAB3), we obtain" a higher
performance with an accuracy of 98.6% & 99.2%
respectively.
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