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Abstract

We study how gates shape the dynamics of a continuous-time gated recurrent
network, closely related to the Gated Recurrent Unit (GRU). As a function of the
initialization hyperparameters, we map out the phase diagram of the gated RNN
showing it can exhibit a range of rich phenomena. In addition to highlighting
the different dynamical phases, this phase diagram provides a principled map
for initialization choices. We show that gating can robustly produce slow modes
and line attractor dynamics – a mechanism useful for tasks involving long time
dependencies; furthermore, gating can also lead to a first-order (discontinuous)
transition to chaos, challenging the usual heuristic of initializing at the "edge of
chaos". 2

1 Introduction

Modern recurrent neural networks (RNNs) are able to learn complex sequence processing tasks in
large part due to the use of gating. This architectural innovation, pioneered with the Long Short-
Term Memory (LSTM) in [5] and its various variants, was intuitively argued to provide an efficient
solution to the exploding and vanishing gradients problem, allowing RNNs to be trained by powerful
gradient-based methods.

Despite their popularity in RNNs, a more systematic study of how gates shape the dynamics and
gradients has been lacking. In particular, each of the gates has additional hyperparameters, making
the space of hyperparameters larger and more challenging to navigate. One particularly important set
of hyperparameters is the mean and variance of the distribution used for the initialization of weight
matrices [9]. To date, there is no principled method to inform the choices of these hyperparameters
for gated RNNs.

The goal of this work is to map out the phase diagram of dynamics in the space of the hyperparameters
of gated RNNs, which we find to be remarkably rich. In particular, the phase diagram informs us
about the autonomous dynamics of a gated RNN at initialization, and the adjoint sensitivity analysis
shows that the behavior of the gradients at initialization is also intimately linked to this picture [6].
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2 Gated Recurrent Neural Networks

We study a continuous-time gated RNN with two gates: one which dynamically controls the time
constant (z-gate), and another which modulates the network connectivity matrix (r-gate). The hidden
units h ∈ RN are coupled to the dynamical gating variables r, z ∈ RN which follow the dynamical
equations:

dh

dt
= σ(z)�

[
− h + ghJ

h
(
φ(h)� σ(r)

)]
, (1)

τz
dz

dt
= −z + αzJ

zφ(h), τr
dr

dt
= −r + αrJ

rφ(h), (2)

where � indicates element-wise product, and the nonlinearities φ and σ are applied element-wise to
their vector argument. Here our focus is on autonomous dynamics, and we leave the influence of inputs
for future work. The weight matrices have elements drawn from Gaussian distributions N (0, 1/N).
We use the activation φ(x) = tanh(x), and a gating sigmoid function σ(x) = 1/(1 + exp(−x)). We
consider the effect on the dynamics of varying the hyperparameters Θ = {gh, αz, αr}, which set the
scale of the different weight matrices. For most of what follows, we consider τz = τr = 1.

We comment briefly on the relation of our network equations to the popular discrete-time GRU
[3]. The z variable corresponds to the update gate, whereas the r variable is naturally analogous to
the reset gate. Conventionally, these variables do not have intrinsic dynamics themselves, a limit
which can be recovered by setting τz = τr = 0. The other subtle difference is that in the GRU, the
nonlinearity φ typically comes after the linear transformation Jh. We find that the static mean-field
theory derived for our model actually matches that for the GRU found in [1] (see Appendix A for
details), and thus we expect much of the phenomena described here to be present in the GRU as well.

2.1 Dynamical mean-field theory

For the gated RNN with random weight matrices, we develop a dynamical mean-field theory which
reduces the description of the 3N deterministic differential equations to three stochastic differential
equations driven by Gaussian noise processes whose statistics have to be determined self-consistently.
Specifically,

dh

dt
= σ(z) (−h+ ghηh) ,

dz

dt
= −z + αzηz,

dr

dt
= −r + αrηr, (3)

where the Gaussian noise processes ηa for a ∈ {h, r, z} are non-Markovian and have self-consistently
determined variances. Let x(t) = (h(t), r(t), z(t)) stand for the triple of state variables, and ϕ(x(t))
denote any functional of these variables. Then we define Cϕ(x)(t, t′) = E [ϕ(x(t))ϕ(x(t′))], where
the expectation is taken over the stochastic processes ηa. The self-consistency condition for the noise
covariances are then given by

E [ηh(t)ηh(t′)] = Cφ(h)(t, t
′)Cσ(r)(t, t

′), E [ηz(t)ηz(t
′)] = E [ηr(t)ηr(t

′)] = Cφ(h)(t, t
′)

The z-gate appears as a multiplicative term in the equation for h(t), causing it to be non-Gaussian.
This complicates the analysis of the dynamical mean field theory (DMFT) in the presence of nonzero
αz . However, Gaussianity is restored in the static limit dh/dt = 0, corresponding to fixed points of
the dynamics. Here, the static mean-field equations become

Ch = g2hCφ(h)Cσ(r), Cr = α2
rCφ(h), (4)

We note that these static mean-field equations for our continuous-time gated RNN are the same as
those for the GRU found in [1].

We find that the important dynamical regimes, and the transitions between them, are determined
only on the gh − αr plane. However, αz essentially being a dynamical time constant, influences the
stability properties, which we discuss further in Sec. (3.3)

3 Phase Diagram for the Gated RNN

The hyperparameter phase diagram for our gated RNN is presented in Figure (1), the essential aspects
of which we describe in this section.
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Figure 1: (a) Hyperparameter phase diagram for network (1-2) showing the different dynamical
regimes in the αr− gh plane; (b) Lyapunov spectrum flattens with increasing αz , showing emergence
of marginal stability; (c) Maximum Lyapunov exponent as a function of gh for large αr (along red
arrow in (a)), small αr (along orange arrow in (a)), and αr = 0. Full network simulations (circles)
agree well with DMFT prediction (solid line).

3.1 Fixed points from mean-field theory

The first crucial ingredient in constructing our phase diagram is a map of the fixed-point (FP)
solutions to the mean-field theory (4). Finding non-zero solutions in the MFT typically implies that
the microscopic equations (1-2) have a large (likely exponential in N [10]) number of critical points
(i.e. saddles) which sculpt the dynamics [8]. Furthermore, if these FPs are unstable, the dynamics is
typically chaotic. We find a notable exception to this, discussed in Sec. (3.5). We summarize the
nature of the fixed-point solutions below.

In the absence of biases, Ch = 0 is always a solution. In addition to this trivial solution, we find the
following regimes:

• For gh <
√

2, Ch = 0 is the only solution to (4) for all αr, and the zero fixed-point is stable.

• For
√

2 < gh < 2, there exists a bifurcation at a critical a∗r where the number of fixed points
jumps from one to three, with exactly two FPs on the critical curve. The bifurcation curve
appears as the green line separating regions 1 and 2. The zero FP remains stable in this
region, whereas the newly appearing non-zero FPs are unstable.

The asymptotes of the bifurcation curve are given by the following: α∗r →∞ as gh →
√

2
+

,
whereas α∗r →

√
8 as gh → 2−. Therefore, with αr below a certain threshold, the regions 2

and 3 will not be observed.

• For gh > 2, there are two fixed points (including the zero FP), and both are unstable.

3.2 Jacobian stability analysis for fixed points

We study the stability properties of the fixed-points using the Jacobian spectrum. The instantaneous
Jacobian evaluated near a fixed point can be treated as a structured random matrix, whose spectrum
can be computed by the method of Hermitian reduction [4, 2]. In the large N limit, we evaluate the
resolvent using the Dyson equation within the self-consistent Born approximation (c.f. [1]). The
main result of this analysis is an expression for the curve describing the boundary of the Jacobian
spectral density as a function of the network statistics, which is given by λ ∈ C satisfying

g2hCφ′(h)

(
Cσ(r) +

α2
rCφ(h)Cσ′(r)

|λ+ 1|2
)
F (λ, λ̄) = 1, where F (λ, λ̄) = E

[
σ(z)2

|λ+ σ(z)|2
]
. (5)
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From this, we can determine the condition for stability. We ask what is the condition for λ = 0 to be
on this boundary curve. This determines the FP instability transition, quoted in the previous section
(3.1). In the absence of biases, the zero FP is the only stable FP. With biases it is possible to have
stable nonzero FPs.

3.3 Marginal stability and line attractors

Despite being formally unstable, there is a region of phase space where the dynamics can exhibit a
whole spectrum of very slow modes by increasing αz . In the limit αz =∞, σ(z) becomes bimodal
and F (λ, λ̄)→ 1

2|λ+1|2 . Using this in (5), we find that the FPs in the hatched region 5 of the phase
diagram becomes marginally stable: the bulk of Jacobian eigenvalues has negative real part, while an
extensive number of eigenvalues (approaching N/2) remain precisely at zero.

A careful analysis of the spectral curve shows that the leading edge of the support approaches zero
exponentially in αz , indicating that for even modestly large αz ∼ O(10), we can reasonably expect
very slow dynamics and approximate marginal stability. This property of the instantaneous Jacobian
is mirrored in the asymptotic (late-time) stability of the network. Asymptotically, the appropriate
object of study is the Lyapunov spectrum, which gives a fine-grained breakdown of the distribution of
stable and unstable (i.e. chaotic) directions in phase space, in which perturbations either decay or
grow, respectively. Fig. (1b) shows that a significant fraction of the Lyapunov spectrum becomes
nearly flat and concentrated near zero already for αz = 20.

3.3.1 Trainability near marginal stability

A practical consequence of this proximity to marginal stability is that the network supports approxi-
mate line attractors without fine-tuning, and which persist for very long timescales. In tasks which
utilize line attractors for computation (e.g. sentiment classification [7]), we conjecture that initializing
the network in this region will lead to more efficient training.

3.4 Transition to chaos

We find that for αr <
√

8, the fixed-point becomes unstable (blue (1) to yellow (4) ) precisely when
the dynamics continuously transitions from stable to chaotic. In fact, the two phenomena are tightly
linked across this transition: 1) transition from one FP to many (unstable) FPs, which is a transition in
the topological complexity, and 2) transition from negative Lyapunov exponent (stable FP) to positive
Lyapunov exponent (chaotic attractor), which is a transition in the dynamical complexity [10].

This tight coupling between the topological and dynamical complexity can be broken in a novel
chaotic transition in the region gh < 2, which we now explore.

3.5 Discontinuous transition to chaos

Region 1 only supports a single fixed-point which is the global attractor of dynamics. Region 2
supports many more fixed points, but all of them are unstable; moreover, from region 1 to 2, there
are no discernible dynamical consequences. A significant dynamical transition occurs crossing from
Region 2 to 3, for

√
8/3 < gh < 2. Once in region 3, chaotic transients appear. Furthermore, we

find that the lifetime of chaotic transients scales extensively with N , indicating, as N → ∞, the
emergence of a stable chaotic attractor in addition to the stable zero FP. This is reflected in the DMFT
by the existence of a time-dependent solution to the auto-correlation function Ch(t, t′) in region 3.

Another novel aspect of this transition is the discontinuous jump in the maximal Lyapunov exponent
when crossing the red line separating regions 2 and 3, shown in Fig. 1c and illustrated by a red arrow
in Fig. 1a. In contrast, the transition to chaos along the orange arrow is continuous, with the Lyapunov
exponent (Fig. 1c) passing through zero. In the continuous case, the transition line is critical in
the sense that the timescale for relaxation of auto-correlation functions diverges as the transition is
approached. In contrast, the discontinuous transition resembles a first-order phase transition, and
there is strong chaotic activity right from the start.
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4 Conclusion

In summary, we have shown how gates shape the dynamics of a RNN by mapping out a phase
diagram, which additionally serves as a guide for hyperparameter choices. We show that gates can
robustly produce line-attractor dynamics, which are useful mechanisms for tasks involving long-time
dependencies. Gating can also produce a novel, discontinuous transition to chaos which is likely
detrimental to training. In ongoing work, we investigate how gates modulate the interaction between
inputs and intrinsic dynamics.

Broader Impact

Our work provides a principled way to assess how architectural choices shape the behavior of RNNs.
This can be used to improve trainability of RNNs on tasks such as NLP and time-series prediction.
Our work also shows how analytical techniques popular in theoretical physics can be leveraged to
understand the behavior of machine learning models.
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A Mapping to GRU

The Gated Recurrent Unit (GRU) [3] in the absence of input and bias is described by a hidden state
variable xt ∈ RN , with two dynamical gating variables: an update gate zt and a reset gate rt which
both take values zt, rt ∈ (0, 1)N . The dynamics of the GRU is given by

zt = σ (αzJzxt−1) , update (6)
rt = σ (αrJrxt−1) , reset (7)
yt = Jh(rt � xt−1), (8)
xt = zt � xt−1 + (1− zt)� φ(ghyt). (9)

In the (static) mean-field theory for the fixed-point variances, y and x are Gaussian random variables
with zero mean and variances Cy and Cx, respectively. The mean-field equations for the GRU are
then [1]

Cy = CxCσ(αrx), Cx = Cφ(ghy). (10)

These equations can be seen as a single nonlinear implicit equation for either Cx or Cy . Comparing
to (4), there is an exact mapping in which g2hCy = Ch, so that the MFT for both the continuous-time
network and the GRU have the same space of FP solutions.
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