
Neural SDEs Made Easy:
SDEs are Infinite-Dimensional GANS

Patrick Kidger1 James Foster1 Xuechen Li2 Harald Oberhauser1 Terry Lyons1
1 Mathematical Institute, University of Oxford
1 The Alan Turing Institute, The British Library

2 Google Research
{kidger, foster, oberhauser, tlyons}@maths.ox.ac.uk

lxuechen@cs.toronto.edu

Abstract

Several authors have introduced Neural Stochastic Differential Equations (Neural
SDEs), often involving complex theory with various limitations. Here, we aim
to introduce a generic, user friendly approach to neural SDEs. Our central
contribution is the observation that an SDE is a map from Wiener measure
(Brownian motion) to a solution distribution, which may be sampled from, but
which does not admit a straightforward notion of probability density – and that
this is just the familiar formulation of a GAN. This produces a continuous-time
generative model, arbitrary drift and diffusions are admissible, and in the infinite
data limit any SDE may be learnt.

1 Introduction

Neural differential equations are an elegant concept, bringing together the two dominant modelling
paradigms of neural networks and differential equations. Indeed, since their introduction, Neural
Ordinary Differential Equations [Chen et al., 2018] have prompted the creation of a wide variety of
similarly-inspired models, for example based around controlled differential equations [Kidger et al.,
2020, Morrill et al., 2020], Lagrangians [Cranmer et al., 2020], higher-order ODEs [Massaroli et al.,
2020, Norcliffe et al., 2020], and equilibrium points [Bai et al., 2019].

In particular, several authors have introduced Neural Stochastic Differential Equations (neural
SDEs), such as Tzen and Raginsky [2019], Li et al. [2020], Hodgkinson et al. [2020] among others.
This is what we aim to improve upon here.

1.1 Contributions

We observe that the mathematical formulation of SDEs is directly comparable to the machine
learning formulation of GANs. Using this connection, we show how it becomes straightforward
to train neural SDEs as generative time series models. Arbitrary drift and diffusions are admissible,
and in the infinite data limit any SDE may be learnt.

Specifically, an SDE is a map from a noise distribution (Wiener measure, the distribution of
Brownian motion), to the solution of the SDE, which is some other distribution on path space. The
model can easily be sampled from: this is what a numerical SDE solver does. However, evaluating

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



its probability density is not possible; in fact it is not even defined in the usual sense.1 This scenario
– no available/tractable densities, but sampling is available – is the familiar setting of a GAN.

H0 = ξφ(Y0)

X0 = ζθ(V )

V ∼ N (0, Iv) Wt = Brownian motion

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt D = mφ(HT )

Yt = `θ(Xt)

Noise

Generator

Discriminator

Initial Hidden state Output

Figure 1: Summary of equations.

2 SDEs as GANs

See Figure 1 for a summary of what we are about to present.

2.1 Generator

Let Z be a random variable on y-dimensional path space. Loosely speaking, this is the space of
continuous functions f : [0, T ] → Ry for some fixed time horizon T > 0. For example, this may
correspond to the (interpolated) evolution of stock prices over time. This is what we seek to model.

Let W : [0, T ] → Rw be a w-dimensional Brownian motion, and V ∼ N (0, Iv) be drawn from
a v-dimensional standard multivariate normal. The values w, v are hyperparameters describing the
size of the noise.

Let

ζθ : Rv → Rx, µθ : [0, T ]× Rx → Rx, σθ : [0, T ]× Rx → Rx×w, `θ : Rx → Ry,

where ζθ, µθ and σθ are (Lipschitz) neural networks, and `θ is linear. Collectively they are
parameterised by θ. The dimension x is a hyperparameter describing the size of the hidden state.

We seek to learn a (Stratonovich) SDE of the form

X0 = ζθ(V ), dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, Yt = `θ(Xt), (1)

for t ∈ [0, T ], with X : [0, T ] → Rx the (strong) solution to the SDE, such that Y
d
≈ Z. That is to

say, the model Y should have approximately the same distribution as the target Z.

Sampling Given a trained model, we sample from it by sampling some initial noise V and some
Brownian motion W , and then solving equation (1) with a numerical SDE solver. Any standard
numerical SDE solver may be used. It will be a little theoretically neater to use Stratonovich SDEs,
rather than Itô SDEs, and so we use the midpoint method (which converges to the Stratonovich
solution), rather than the simpler Euler–Maruyama method (which convergees to the Itô solution).

Hidden state The solutionX represents hidden state, and is not the output of the model. If it were
the output, then future evolution would satisfy a Markov property, of being dependent on the past
only through the present, which need not be true in general.

This is the reason for the additional `θ mapping to Y . Practically speaking, during an SDE solve, Y
may be concatenated alongside X , and `θ concatenated with µθ.

1Technically speaking, a probability density is the Radon–Nikodym derivative of the measure with respect
to the Lebesgue measure. However, the Lebesgue measure only exists for finite dimensional spaces. In infinite
dimensions, it is possible to define densities with respect to for example Gaussian measures, but this is less
obviously meaningful when used with maximum likelihood.

2



Initial condition It is important that there be an additional source of noise for the initial condition,
passed through a nonlinear ζθ, as Y0 = `θ(ζθ(V )) does not depend on the Brownian noise W .

2.2 Discriminator

Each sample from the generator is a path Y : [0, T ]→ Ry; the discriminator must accept such paths
as inputs. There is a natural choice: parameterise the discriminator as another neural SDE.

Let
ξφ : Ry → Rh, fφ : [0, T ]× Rh → Rh, gφ : [0, T ]× Rh → Rh×y, mφ : Rh → R,

where ξφ, fφ and gφ are (Lipschitz) neural networks, and mφ is linear. Collectively they are
parameterised by φ. The dimension h is a hyperparameter describing the size of the hidden state.

Recalling that Y is the generated sample, then the discriminator is an SDE of the form
H0 = ξφ(Y0), dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt, D = mφ(HT ), (2)

for t ∈ [0, T ], with H : [0, T ]→ Rh the (strong) solution to this SDE. The value D ∈ R, which is a
function of the terminal hidden state HT , is the discriminator’s score for real versus fake.

Neural CDEs The discriminator follows the formulation of a neural CDE [Kidger et al., 2020]
with respect to the control Y . Neural CDEs are the continuous-time analogue to RNNs, just as
neural ODEs are the continuous-time analogue to residual networks [Chen et al., 2018]. This is
what motivates equation (2) as a probably sensible choice of discriminator. Moreover, it means
that the discriminator enjoys theoretical properties, such as universal approximation with respect to
compact sets of paths.

Training data Just described is how the discriminator is applied to the generator output. For the
training data, the analogous thing is done, as follows.

Suppose for simplicity that we observe samples from Z as an irregularly sampled but fully observed
time series z = ((t0, z0), . . . , (tn, zn)), where without loss of generality t0 = 0 and tn = T .

Then we may (linearly) interpolate to produce ẑ : [0, T ]→ Ry such that ẑ(ti) = zi, and compute
H0 = ξφ(Y0), dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dẑt, D = mφ(HT )

as before.

If the data is actually partially observed, has asynchronous sampling, or is of variable length, then
the interpolation may still be performed in much the same way. See the examples of Kidger [2020].

Initial condition and hidden state As with the generator, it is important that there be a learnt
initial condition, and that the output be a function of HT and not a univariate HT itself. (See also
Kidger et al. [2020], who emphasise the need for a learnt initial condition.)

Single SDE solve In practice, both generator and discriminator may be concatenated together into
a single SDE solve. The state is the combined drift [X,Y,H], the drift is the combined diffusion
[µθ, `θ, fφ], and the diffusion is the combined [σθ, 0, gφ]. ThenHT is extracted from the final hidden
state, and mθ applied, to produce the discriminator’s score for that sample.

Training loss The training losses used are the usual one for Wasserstein GANs [Goodfellow et al.,
2014, Arjovsky et al., 2017]. Let Yθ : (V,W ) 7→ Y represent the overall action of the generator, and
Dφ : Y 7→ D the overall action of the discriminator. Then the generator is optimised with respect to

min
θ

[EV,WDφ(Yθ(V,W ))] ,

and the discriminator is optimised with respect to
max
φ

[EV,WDφ(Yθ(V,W ))− EzDφ(ẑ)] .

Training is performed via stochastic gradient descent techniques as usual. Backpropagation may
be performed either through the internal operations of the numerical SDE solver, or via the adjoint
method for SDEs [Li et al., 2020]. In the latter case, then the entire SDE is treated as a single
differentiable primitive within the computation graph.

3



Lipschitz regularisation Wasserstein GANs need a Lipschitz discriminator, for which a variety
of methods have been proposed. We use gradient penalty [Gulrajani et al., 2017], finding that neither
weight clipping nor spectral normalisation worked [Arjovsky et al., 2017, Miyato et al., 2018].

We attribute this to the observation that neural SDEs (as with RNNs) have a recurrent structure. If
a single step has Lipschitz constant λ, then the Lipschitz constant of the overall neural SDE will be
O(λT ) in the time horizon T . Even small positive deviations from λ = 1 produce large Lipschitz
constants. Gradient penalty avoids this by regularising the Lipschitz constant of the overall network.

3 Experiments

We experiment on three datasets. The first is Alphabet/Google stock prices over the course a year,
sliced into one-minute intervals. We seek to model the midpoint and log-spread. The second is a
univariate dataset consisting of how the weights of a neural network change during training. The
third is a dataset of air quality in Beijing, with 6 channels.

We compare against the Latent ODE model of Rubanova et al. [2019] and the continuous time
flow process (CTFP) of Deng et al. [2020]. These were selected as being related to neural SDEs:
latent ODEs are pure drift models, whilst CTFPs are (nearly) pure diffusion models. Neural SDEs
combine both. Latent ODEs are trained as VAEs; CTFPs are trained as normalising flows; neural
SDEs are trained as GANs. To our knowledge, neural SDEs are the first model in their class, of
continuous-time GANs.

3.1 Results

We study three test metrics: classification, prediction, and MMD. In each case every model is run
three times and mean and standard deviation of the test metrics are reported.

Classification is given by training a (neural CDE) model to distinguish real from fake data. Larger
losses, meaning inability to classify, indicate better performance of the generative model.

Prediction is a train on synthetic, test on real (TSTR) metric [Hyland et al., 2017]. We train a
sequence-to-sequence (neural CDE / neural ODE) model to predict the latter part of a time series
given the first part. Smaller losses, meaning ability to predict, are better.

Maximum mean discrepancy is a distance between probability distributions with respect to a kernel
or feature map. Smaller values, meaning closer distributions, are better.

Table 1: Results. (Bold indicates best performance.)
Neural SDE CTFP Latent ODE

Stocks Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3
MMD 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8

Weights Classification 0.507 ± 0.019 0.676 ± 0.014 0.0112 ± 0.0025
Prediction 0.00843 ± 0.00759 0.0808 ± 0.0514 0.127 ± 0.152
MMD 5.28 ± 1.27 12.0 ± 0.5 23.2 ± 11.8

Beijing Air
Quality

Classification 0.589 ± 0.051 0.764 ± 0.064 0.392 ± 0.011
Prediction 0.395 ± 0.056 0.810 ± 0.083 0.456 ± 0.095
MMD 0.000160 ± 0.000029 0.00198 ± 0.00001 0.000242 ± 0.000002

We use torchdiffeq, torchsde and torchcde to implement these models. [Chen, 2018, Li,
2020, Kidger, 2020]

4 Conclusion

We have shown that SDEs and GANs follow similar formalisms. Using this connection, we show to
straightforwardly train neural SDEs as continuous time, infinite dimensional, time series GANs.

4



Broader Impact

SDE models are archetypal of certain disciplines, such as parts of physics, or quantitative finance.
We expect this work to be of particular benefit to these disciplines, as it offers a straightforward way
to train general, flexible SDE models. No specific negative consequences are anticipated as a result
of this work.

Acknowledgements

PK was supported by the EPSRC grant EP/L015811/1. JF was supported by the EPSRC grant
EP/N509711/1. PK, JF, HO, TL were supported by the Alan Turing Institute under the EPSRC
grant EP/N510129/1. PK thanks Penny Drinkwater for advice on Figure 1.

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial

Networks. volume 70 of Proceedings of Machine Learning Research, pages 214–223,
International Convention Centre, Sydney, Australia, 2017. PMLR.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in Neural
Information Processing Systems 32, pages 690–701. Curran Associates, Inc., 2019.

Ricky T. Q. Chen. torchdiffeq, 2018. https://github.com/rtqichen/torchdiffeq.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems 31, pages 6571–
6583. Curran Associates, Inc., 2018.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations, 2020.

Ruizhi Deng, Bo Chang, Marcus A. Brubaker, Greg Mori, and Andreas Lehrmann. Modeling
Continuous Stochastic Processes with Dynamic Normalizing Flows. arXiv:2002.10516, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. title = Generative Adversarial Nets, Generative Adversarial
Nets. In Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran
Associates, Inc., 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved Training of Wasserstein GANs. In Advances in Neural Information Processing Systems
30, pages 5767–5777. Curran Associates, Inc., 2017.

Liam Hodgkinson, Chris van der Heide, Fred Roosta, and Michael Mahoney. Stochastic
Normalizing Flows. arXiv:2002.09547, 2020.

Stephanie L. Hyland, Cristóbal Esteban, and Gunnar Rätsch. Real-Valued (Medical) Time Series
Generation with Recurrent Conditional GANs. arXiv:1706.02633, 2017.

Patrick Kidger. torchcde, 2020. https://github.com/patrick-kidger/torchcde.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Controlled Differential
Equations for Irregular Time Series. arXiv:2005.08926, 2020.

Xuechen Li. torchsde, 2020. https://github.com/google-research/torchsde.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David K. Duvenaud. Scalable
Gradients and Variational Inference for Stochastic Differential Equations. AISTATS, 2020.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
Neural ODEs. arXiv:2002.08071, 2020.

5

https://github.com/rtqichen/torchdiffeq
https://github.com/patrick-kidger/torchcde
https://github.com/google-research/torchsde


Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization
for Generative Adversarial Networks. In International Conference on Learning Representations,
2018.

James Morrill, Patrick Kidger, Cristopher Salvi, James Foster, and Terry Lyons. Neural CDEs for
Long Time-Series via the Log-ODE Method. arXiv:2009.08295, 2020.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Lió. On Second
Order Behaviourin Augmented Neural ODEs. arXiv:2006.07220, 2020.

Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent Ordinary Differential Equations
for Irregularly-Sampled Time Series. In Advances in Neural Information Processing Systems 32,
pages 5320–5330. Curran Associates, Inc., 2019.

Belinda Tzen and Maxim Raginsky. Neural Stochastic Differential Equations: Deep Latent Gaussian
Models in the Diffusion Limit. arXiv:1905.09883, 2019.

6


	Introduction
	Contributions

	SDEs as GANs
	Generator
	Discriminator

	Experiments
	Results

	Conclusion

