# **Neural SDEs Made Easy: SDEs are Infinite-Dimensional GANs**

# SUMMARY

SDEs are a map from noise (Brownian motion) to a solution distribution. They may be sampled from via numerical SDE solvers, but they do not admit a notion of probability density.

We observe that this is exactly the same as the generator of a GAN. By adding a discriminator, we train arbitrary neural SDEs as continuous-time generative models for time series; e.g. to model financial stocks.

# **BACKGROUND: SDEs**

Consider an SDE of the form

 $X_0 \sim \mu$ ,  $dX_t = f(t, X_t) dt + g(t, X_t) \circ dW_t$ .

Here:

- $\mu$  is the initial distribution.
- *f* is the drift, *g* is the diffusion.
- W is Brownian motion.

The (strong) solution to an SDE is the unique map F such that  $F(\mu, W) =$ X. It is a map from noise distributions to a target distribution. It can be sampled from via SDE solvers; it does not have a probability density.

# **BACKGROUND: GANS**

Given some noise distribution  $\mu$ , and a target distribution  $\nu$ , then the generator  $G_{\theta}$  of a GAN is trained such that  $G_{\theta}(\mu) = \nu$ .

It is a map from a noise distribution to a target distribution. It can be sampled from, but its probability density is impossible to compute.

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, Terry Lyons

### Method

We see that SDEs and GANs have a lot in common. It goes further: SDEs are usually trained by matching specific statistics (e.g. option prices). Meanwhile GANs are trained by matching a learnt scalar statistic: the discriminator.

Thus by using a neural SDE as a generator—and a neural CDE as the discriminator—we can train a general neural SDE as a model for time series.

|               | Initial                                           | Hidden                                                                    |
|---------------|---------------------------------------------------|---------------------------------------------------------------------------|
| Noise         | $V \sim \mathcal{N}(0, I_v)$                      | $W_t = Browni$                                                            |
| Concrator     | $\mathbf{V}_{2} = \mathbf{\zeta}_{2}(\mathbf{V})$ | $\mathbf{A}\mathbf{X}_{i} = \mathbf{U}_{i}(t \mathbf{X}_{i}) \mathbf{A}t$ |
| Generator     | $\Delta 0 - \zeta \theta(V)$                      | $u x_t - \mu \theta(t, x_t) u t$                                          |
|               |                                                   |                                                                           |
| Discriminator | $H_0 = \xi_{\phi}(Y_0) \longrightarrow$           | $\mathrm{d}H_t = f_\phi(t,H_t)\mathrm{d}t$                                |
| JISCHIMATOR   | 110 - 90(10)                                      | $\mathbf{u}_{t} - j\phi(\mathbf{r},\mathbf{n}_{t})\mathbf{u}$             |

### Results

| Dataset      | Performance Metric | Neural SDE                          | CTFP                                | Latent ODE              |
|--------------|--------------------|-------------------------------------|-------------------------------------|-------------------------|
| Financial    | Classification     | $0.357 \pm 0.045$                   | $0.165 \pm 0.087$                   | $0.000239 \pm 0.000086$ |
| Stocks       | Prediction         | $\textbf{0.144} \pm \textbf{0.045}$ | $0.725 \pm 0.233$                   | $46.2 \pm 12.3$         |
|              | MMD                | $\boldsymbol{1.92\pm0.09}$          | $2.70\pm0.47$                       | $60.4 \pm 35.8$         |
| CNN Training | g Classification   | $0.507 \pm 0.019$                   | $\textbf{0.676} \pm \textbf{0.014}$ | $0.0112 \pm 0.0025$     |
| Weights      | Prediction         | $0.00843 \pm 0.00759$               | $0.0808 \pm 0.0514$                 | $0.127 \pm 0.152$       |
|              | MMD                | $\textbf{5.28} \pm \textbf{1.27}$   | $12.0\pm0.5$                        | $23.2 \pm 11.8$         |
| Beijing Air  | Classification     | $0.589 \pm 0.051$                   | $\textbf{0.764} \pm \textbf{0.064}$ | $0.392 \pm 0.011$       |
| Quality      | Prediction         | $0.395 \pm 0.056$                   | $0.810 \pm 0.083$                   | $0.456 \pm 0.095$       |
|              | MMD                | $0.000160 \pm 0.000029$             | $0.00198 \pm 0.00001$               | $0.000242 \pm 0.000002$ |

### FIND OUT MORE:

| https://openreview.net/pdf?i |
|------------------------------|
| https://github.com/google-re |
| kidger@maths.ox.ac.uk        |
|                              |





id=padYzanQNbg esearch/torchsde