
Differentiable Physics for Improving the Accuracy of
Iterative PDE-Solvers with Neural Networks

Kiwon Um1,2

kiwon.um@telecom-paris.fr
Yun (Raymond) Fei3

yf2320@columbia.edu
Philipp Holl1

philipp.holl@tum.de

Robert Brand1

robert.brand@tum.de
Nils Thuerey1

nils.thuerey@tum.de

Abstract

Finding accurate solutions to partial differential equations (PDEs) is a crucial task
for a wide range of fields in physics and engineering. We target the problem of
reducing numerical errors of iterative PDE solvers and compare different learning
approaches for finding complex correction functions. In particular, we highlight the
performance of differentiable physics networks for a wide variety of PDEs, from
non-linear advection-diffusion systems to three-dimensional Navier-Stokes flows.

1 Introduction
Numerical methods are prevalent in science to improve the understanding of our world [14, 13, 7].
We specifically target the numerical errors that arise in the discretization of PDEs [4, 2]. We show
that, despite the lack of closed-form descriptions, discretization errors can be seen as functions with
regular and repeating structures and, thus, can be learned by neural networks. Once trained, such a
network can be evaluated locally to improve the solution of a PDE-solver, i.e., to reduce its numerical
error.

We demonstrate that neural networks can be successfully trained if they can interact with the
respective PDE solver during training. To achieve this, we leverage differentiable simulations [1, 16].
While incorporating physical models into deep learning approaches has been studied in various forms
[10, 5, 3, 11], differentiable simulations allow a trained model to autonomously explore and experience
the physical environment and receive directed feedback regarding its interactions throughout the
solver iterations. We specifically target recurrent interactions of highly non-linear PDEs with deep
neural networks. This combination bears particular promise: it improves generalizing capabilities of
the trained models by letting the PDE-solver handle large-scale changes to the data distribution such

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.

t=0

(a) Simulation
Only

(b) Simulation
With Learned

Correction

(c) Reference
Simulation

t=75

t=0 t=75

t=0 t=75

t=140

t=140

t=140

t=200

t=200

t=200

MAE w.r.t. reference: 0.167

MAE w.r.t. reference: 0.130
0.8

0.4

0.0

Figure 1: A 3D fluid problem, shown in terms of vorticity. From top to bottom: a) regular simulation,
b) reference, c) regular simulation with learned corrector.

that the learned model can focus on localized structures not captured by the discretization. While
physical models generalize very well, learned models often specialize in data distributions seen at
training time. However, we will show that, by combining PDE-based solvers with a learned model,
we can arrive at hybrid methods that yield improved accuracy while handling solution manifolds with
significant amounts of varying physical behavior.

We show the advantages of training via differentiable physics for explicit and implicit solvers
applied to a broad class of canonical PDEs. We showcase models trained with up to 128 steps
of a differentiable simulator and apply our model to complex three-dimensional (3D) fluid flows
(Fig. 1). Additionally, we present a detailed empirical study of different approaches for training
neural networks in conjunction with iterative PDE-solvers for recurrent rollouts of several hundred
time steps. On the side of implicit solvers, we consider the Poisson problem [9].

2 Learning to Reduce Numerical Errors
Numerical methods yield approximations of a smooth function u in a discrete setting and invariably
introduce errors. These errors can be measured in terms of the deviation from the exact analytical
solution. For discrete simulations of PDEs, they are typically expressed as a function of the truncation,
O(∆tk). Higher-order methods, with large k, are preferable but difficult to arrive at in practice. For
practical schemes, no closed-form expression exists for truncation errors, and the errors often grow
exponentially as solutions are integrated over time. We investigate methods that solve a discretized
PDE P by performing discrete time steps ∆t. Each subsequent step can depend on any number of
previous steps, u(x, t+ ∆t) = P(u(x, t),u(x, t−∆t), ...), where x ∈ Ω ⊆ Rd for the domain Ω
in d dimensions, and t ∈ R+.

Problem Statement: We consider two different discrete versions of the same PDE P , with PR

denoting a more accurate discretization with solutions r ∈ R from the reference manifold, and an
approximate version Ps with solutions s ∈ S from the source manifold. We consider r and s to be
states at a certain instance in time, i.e., they represent phase space points, and evolutions over time
are given by a trajectory in each solution manifold. As we focus on the discrete setting, a solution
over time consists of a reference sequence {rt, rt+∆t, · · · , rt+k∆t} in the solution manifold R, and
correspondingly, a more coarsely approximated source sequence {st, st+∆t, · · · , st+k∆t} exists in
the solution manifold S . We also employ a mapping operator T that transforms a phase space point
from one solution manifold to a suitable point in the other manifold, e.g., for the initial conditions of
the sequences above, we typically choose st = T rt. In the simplest case, the projection T can be
obtained via filtering and re-sampling operations.

By evaluating PR for R, we can compute the points of the phase space sequences, e.g., rt+∆t =
PR(rt) for an update scheme that only depends on time t. Without loss of generality, we assume
a fixed ∆t and denote a state rt+k∆t after k steps of size ∆t with rt+k. Due to the inherently
different numerical approximations, Ps(T rt) 6= T rt+1 for the vast majority of states. In chaotic
systems, such differences typically grow exponentially over time until they saturate at the level
of mean difference between solutions in the two manifolds. We use an L2-norm in the following
to quantify the deviations, i.e., L(st, T rt) = ‖st − T rt‖2. Our learning goal is to arrive at a
correction operator C(s) such that a solution to which the correction is applied has a lower error
than an unmodified solution: L(Ps(C(T rt0)), T rt1) < L(Ps(T rt0), T rt1). The correction function
C(s|θ) is represented as a deep neural network with weights θ and receives the state s to infer an
additive correction field with the same dimension. To distinguish the original phase states s from
corrected ones, we denote the latter with s̃, and we use an exponential notation to indicate a recursive
application of a function, i.e.,

st+n = Ps(Ps(· · · Ps(T rt) · · ·)) = Pn
s (T rt) . (1)

Within this setting, any type of learning method naturally needs to compare states from the source
domain with the reference domain in order to bridge the gap between the two solution manifolds.
How the evolution in the source manifold at training time is computed, i.e., if and how the corrector
interacts with the PDE, has a profound impact on the learning process and the achievable final
accuracy. We distinguish three cases: no interaction (NON), a pre-computed form of interaction
(PRE), and a tight coupling via a differentiable solver in the training loop (SOL). For each, a subscript
n optionally denotes the number of steps over which the future evolution is recursively evaluated,
e.g., SOLn.

2

(a)

So
ur

ce
C

or
re

ct
ed

R
ef

er
en

ce

0.0

-1.

1.0

(b)

0.5

0.0

1.0

(c)

0.0

 π

−π

Figure 2: Our PDE scenarios cover a wide range of behavior including (a) vortex shedding, (b)
complex buoyancy effects, and (c) advection-diffusion systems. Shown are different time steps (l.t.r.)
in terms of vorticity for (a), transported density for (b), and angle of velocity direction for (c).

3 Experiments
We investigate a diverse set of constrained advection-diffusion models of which the general form is

∂u/∂t = −u · ∇u + ν∇ · ∇u + g subject to Mu = 0, (2)

where u is the velocity, ν denotes the diffusion coefficient (i.e., viscosity), and g denotes external
forces. The constraint matrix M contains an additional set of equality constraints imposed on u.
In total, we target four scenarios: pure non-linear advection-diffusion (Burger’s equation), two-
dimensional Navier-Stokes flow, Navier-Stokes coupled with a second advection-diffusion equation
for a buoyancy-driven flow, and a 3D Navier-Stokes case. Also, we discuss CG solvers in the context
of differentiable operators below. The reference solutions from R are typically computed with the
same numerical method using a finer discretization (4x in our setting, with effective resolutions of
1282 and higher). For the SOL variants, we employ a differentiable PDE-solver that runs mini-batches
of simulations and provides gradients for all operations of the solving process within the deep learning
framework. For n > 1, i.e., PDE-based look-ahead at training time, the gradients are back-propagated
through the solver n−1 times, and the difference w.r.t. a pre-computed reference solution is evaluated
for all intermediate results.

The neural network component F (s | θ) of the correction function is realized with a fully convo-
lutional architecture. Our networks typically consist of 10 convolutional layers with 16 features
each, interspresed with ReLU activation functions using kernel sizes of 3d and 5d. The networks
parameters θ are optimized with a fixed number of steps with an ADAM optimizer [8] and a learning
rate of 10−4.

We quantify the performance of the trained models by computing the mean absolute error between a
computed solution and the corresponding projected reference for n consecutive steps of a simulation.
We report absolute error values for different models in comparison to an unmodified source trajectory
from S . Additionally, relative improvements are given w.r.t. the difference between unmodified
source and reference solutions.

4 Results
Our experiments show that learned correction functions can achieve substantial gains in accuracy
over a regular simulation. A visual overview of the different tests is given in Fig. 2, and a summary
of our evaluation is provided in Fig. 3.

The first scenario includes an unsteady wake flow [12] in Fig. 3a), where the simplest method (NON)
yields stable training and a model that already reduces the mean absolute error (MAE) from 0.146
for a regular simulation without correction (SRC) to an MAE of 0.049 when applying the learned
correction. The pre-computed correction (PRE) improves on this behavior via its time regularization
with an error of 0.031. A SOL32 model trained with a differentiable physics solver for 32 time steps
in each iteration of ADAM yields a significantly lower error of 0.013. This means the numerical
errors of the source simulation w.r.t. the reference were reduced by more than a factor of 10.

For the second scenario, buoyancy driven flows, the correction functions benefit from particularly
long rollouts at training time in this scenario (Fig. 3b). Models with simple pre-computed or unaltered
trajectories yield mean errors of 1.37 and 1.07 compared to an error of 1.59 for the source simulation,

3

SRC NON PRE SOL32
0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
A

E
V

el
oc

ity

(a) Unsteady wake

SRC PRE NON SOL128
0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
A

E
V

el
oc

ity

(b) Buoyancy-driven

SRC PRE NON SOL4
0.00

0.05

0.10

0.15

0.20

0.25

M
A

E
V

el
oc

ity

(c) Advection-diffusion

SRC SOLDIV SOL5
0

25

50

75

100

125

It
er

at
io

ns
fo

rA
cc

ur
ac

y
10
−

3

(d) CG solver

SRC NON SOL16

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
A

E
V

el
oc

ity

(e) 3D wake

NON PRE SOL4 SOL8 SOL16 SOL32
0.0

0.2

0.4

0.6

0.8

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t

(f) Unsteady wake, look-ahead

PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128
0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t

(g) Buoyancy-driven, look-ahead

×1 ×2 ×4 ×8 ×16
Reynolds Number

0.2

0.4

0.6

L
2

E
rr

or
of

Fr
eq

.o
fV

el
oc

ity

SRC
NON
PRE
SOL32

(h) Unsteady wake, frequency error

Figure 3: (a)-(e) Numerical approximation error w.r.t. reference solution for unaltered simulations
(SRC) and with learned corrections. The models trained with differentiable physics and look-ahead
achieve significant gains over the other models. (f,g) Relative improvement over varying look-ahead
horizons. (h) A frequency-based evaluation for the unsteady wake flow scenario.

respectively. Instead, a model trained with differentiable physics with 128 steps (SOL128) successfully
reduces the error to 0.62, an improvement of more than 59% compared to the unmodified simulation.

We additionally evaluate our method for a pure advection-diffusion case with Burger’s equation
(Fig. 3c) similar to [3], and for supporting a conjugate gradient solver [6, 15] in terms of an initial
guess (Fig. 3d). While the differentiable physics has less effect in the Burger’s case due to randomized
forcing being present, it succeeds in propagating boundary condition information for the initial guesses
of the conjugate gradient solver.

Lastly, we investigate a 3D case of incompressible flow. The overall setup is similar to the unsteady
wake flow in two dimensions outlined above, but the third dimension extends the axes of rotation in
the fluid from one to three, yielding a very significant increase in complexity. As a result, the flow
behind the cylindrical obstacle quickly becomes chaotic and forms partially turbulent eddies, as shown
in Fig. 1. This scenario requires significantly larger models to learn a correction function, and the
NON version does not manage to stabilize the flow consistently. Instead, the SOL16 version achieves
stable rollouts for several hundred time steps and successfully corrects the numerical inaccuracies of
the coarse discretization, improving the numerical accuracy of the source (SRC) simulation by more
than 22% across a wide range of configurations (Fig. 3e).

This case also highlights the gains in performance that can be achieved with our method. Here,
a simulation as shown in Fig. 1 involving the trained model took 13.3s on average for 100 time
steps, whereas a CPU-based reference simulation required 913.2s. A speed-up of more than 68×.
The graphs shown in Fig. 3 (f-h) additionally highlight the performance of models with increased
look-ahead and provide an evaluation in terms of frequency content for the unsteady wake case.

5 Impact Statement
PDE-based models are very commonly used and can be applied to a wide range of applications,
including weather and climate, epidemics, civil engineering, manufacturing processes, and medical
applications. Our work has the potential to substantially improve how these PDEs are solved, by
enabling a hybrid method in which an ANN learns to interact and improve the prediction of a
traditional sovler. While our method could be used in the development of undesired harmful systems,
our method shares this danger with the class of numerical methods in general.

4

References
[1] B. Amos and J. Z. Kolter. OptNet: Differentiable optimization as a layer in neural networks. In

International Conference on Machine Learning, 2017.

[2] V. I. Arnold. Geometrical methods in the theory of ordinary differential equations, volume 250.
Springer Science & Business Media, 2012.

[3] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–
15349, 2019.

[4] S. Ghosal. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of
Computational Physics, 125(1):187–206, 1996.

[5] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In Advances in
Neural Information Processing Systems, pages 15353–15363, 2019.

[6] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

[7] B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick. Non-newtonian blood flow in
human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5):709–
720, 2004.

[8] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980 [cs], Dec.
2014.

[9] J. Mathews and R. L. Walker. Mathematical methods of physics, volume 501. WA Benjamin
New York, 1970.

[10] J. Morton, A. Jameson, M. J. Kochenderfer, and F. Witherden. Deep dynamical modeling and
control of unsteady fluid flows. In Advances in Neural Information Processing Systems, 2018.

[11] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: A navier-stokes
informed deep learning framework for assimilating flow visualization data. arXiv:1808.04327,
2018.

[12] B. Rajani, A. Kandasamy, and S. Majumdar. Numerical simulation of laminar flow past a
circular cylinder. Applied Mathematical Modelling, 33(3):1228–1247, 2009.

[13] T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia,
V. Bex, P. M. Midgley, et al. Climate change 2013: The physical science basis. Contribution of
working group I to the fifth assessment report of the intergovernmental panel on climate change,
1535, 2013.

[14] K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An overview of cmip5 and the experiment design.
Bulletin of the American Meteorological Society, 93(4):485–498, 2012.

[15] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid simulation
with convolutional networks. In Proceedings of Machine Learning Research, pages 3424–3433,
2017.

[16] M. Toussaint, K. Allen, K. Smith, and J. B. Tenenbaum. Differentiable physics and stable
modes for tool-use and manipulation planning. In Robotics: Science and Systems, 2018.

5

	Introduction
	Learning to Reduce Numerical Errors
	Experiments
	Results
	Impact Statement

