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Abstract

Markov Chain Monte Carlo (MCMC) algorithms are commonly used for their
versatility in sampling from complicated probability distributions. However, as the
dimension of the distribution gets larger, the computational costsfor a satisfactory
exploration of the sampling space become challenging. Adaptive MCMC methods
employing a choice of proposal distribution can address this issue speeding up the
convergence. In this paper we show an alternative way of performing adaptive
MCMC, by using the outcome of Bayesian Neural Networks as the initial proposal
for the Markov Chain. This combined approach increases the acceptance rate in the
Metropolis-Hasting algorithm and accelerate the convergence of the MCMC while
reaching the same final accuracy. Finally, we demonstrate the main advantages of
this approach by constraining the cosmological parameters directly from Cosmic
Microwave Background maps.�

1 Introduction

Cosmological observations have significantly increased in the last decade allowing us to obtain a
better description of the Universe. This task has been also achieved thanks to Bayesian inference
methods allowing to derive constraints on the parameters of cosmological models from those obser-
vations Verde [2007]. Bayesian inference offers a way to learn the prediction task from data through
the posterior distribution p(θ|d) ∼ p(d|θ)p(θ); being θ a set of unknown parameters of interest, d the
data associated with a measurement, p(θ) the prior distribution that quantifies what we know about
θ before observing any data, and p(d|θ) is the likelihood function. Computing the true posterior is
generally intractable, and approximation methods must be implemented in order to perform Bayesian
inference in practice. Two main techniques for this purpose are Variational Inference and Markov
Chain Monte Carlo (MCMC) Graves [2011], Metropolis et al. [1953], Regier et al. [2018], Jain
et al. [2018]. The former method although computationally faster, requires the approximation of
the true posterior, while the latter has become one of the most popular methods for cosmological
parameter estimation due to its advantage of being non-parametric and asymptotically exact. Classical
MCMC methods draw samples sequentially according to a probabilistic algorithm that allows to
scale linearly with the dimension of the parameter space Verde [2007]. However if the complexity of
the model increases from the presence of "slow" parameters, nuisance parameters, foregrounds or
parameter correlations, the sampling will exhibit a high numerical cost Lewis [2013]. Additionally, it
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is generally difficult to determine a convenient initial state for the system and an accurate criterion to
determine the convergence of the Markov Chain. These practical issues compel MCMC practitioners
to resort convergence diagnostic tools which demand to run MCMC for a very long time to obtain
good solutions Dunkley et al. [2005]. In this work we show a preliminary approach to accelerate the
convergence of MCMC by including in the bottom of it, the approximate distribution outcome of the
deep neural network as a proposal for the Markov Chain. We show the advantages of this approach
in constraining the cosmological parameters directly from Cosmic Microwave Background (CMB)
maps.

2 Dataset and Network

Following Hortúa et al. [2020b], we use 50.000 images related to the CMB maps projected in
20 × 20 deg2 patches in the sky for training the Bayesian Neural Network. These images have
a dimensions (256,256,3), where the last channel stands for the Temperature (channel=0) and
Polarization (channel=1,2), and each image corresponds to a specific set value of the cosmological
parameters: dark matter density ωcdm, spectrum amplitude As, baryon density ωb, and the dark
energy density parameter ΩΛ. The BNN was implemented in TensorFlow-Probability, and the same
version of the VGG architecture along with the presence of Flipout as it was shown in Hortúa et al.
[2020b] was used in this paper. Finally, we used the calibration method introduced in Hortúa et al.
[2020a] where α-divergence with α = 1 has been included at the top of the BNN. Results of the
conditional distributions for the predicted parameters by our BNN vs standard MCMC methods are
displayed in Fig. 1.

3 Method

MCMC algorithms are commonly used for sampling from complicated distributions. As the dimension
of the distribution gets larger, the computational costs for a satisfactory exploration of the sampling
space become challenging. Adaptive MCMC methods such as the choice of proposal distributions in
the Metropolis-Hastings algorithms are designed to address this issue speeding up the convergence.
However, a suitable class of distribution is almost never known in advance and the search for improved
proposal distributions is often done manually, through trial and error, which can be difficult especially
in high dimensions. The method shown in this paper can be seen as a novel way to perform adaptive
MCMC in which the output distribution of the BNNs serves as a proposal distribution for the MCMC.
As it was shown in the previous work of Hortúa et al. [2020b], multi-channel BNNs, are able to break
degeneracies among parameters and provide reliable results close to the desired conditional posterior.
This distribution can be used as potential proposals to significantly improve the performance during
parameter inference. MCMC experiments were run in the cobaya software Torrado and Lewis [2020],
with the likelihood given by Verde [2007]
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ĈTT
l ĈEE
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where Ĉl is the power spectrum of the CMB patches obtained with Lens-Tools Petri [2016], and
Cl the theoretical model. Cobaya accepts the cosmological parameters as input, compute Cl via
CLASS Blas et al. [2011] and when the Markov chains have enough points to provide reasonable
samples from the posterior distributions, the simulation stops and it return the chains. We run two
MCMC experiments taking into account the power spectrum of the CMB maps. In the first MCMC
experiments we used the full sky map, while in the second one, we computed the power spectra for
CMB patches and used them as an input in cobaya package.

4 Results

Results of the conditional distributions for the predicted parameters are displayed in Fig. 1 where we
compared the MCMC results with the calibrated BNNs (on the CMB patches described in Section 2).
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Figure 1: Marginalized parameter constraints obtained from temperature maps (TT) and combined
temperature with polarization (POL) using MCMC and the best BNN model. The black line stand for
the real value: ωb = 0.0201, log(1010As) = 3.6450 and ωcdm = 0.1736 taken from the test dataset.

Table 1: Statistics and Parameters 95% intervals for the minimal base-ΛCDM model from our
synthetic CMB dataset using non-informative priori (MCMC) and a precomputed covariance matrix
from VI (covarBNN). The last column reports the metrics using the Full CMB map. The bold values
in the last column correspond to the implementation of a proposal posterior distribution from VI.
Although the full sky gives the smallest credible region, MCMC is 10000 times slower than VI. The
real value considered is the same as specified in Fig. 1

Statistics for various MCMC sampling configurations
MetricsMap Temperature Temperature+Polarization

MCMC covarBNN MCMC covarBNN Full-sky
ωb 0.0190+0.0013

−0.0013 0.0190+0.0012
−0.0012 0.01967+0.00066

−0.00066 0.01968+0.00064
−0.00064 0.02009+0.00010

−0.00010

ln(1010As) 3.633+0.031
−0.031 3.633+0.031

−0.030 3.648+0.015
−0.015 3.648+0.015

−0.016 3.6449+0.0027
−0.0027

ωcdm 0.171+0.011
−0.011 0.170+0.011

−0.011 0.1734+0.0031
−0.0032 0.1734+0.0031

−0.0031 0.1736+0.0009
−0.0009

ΩΛ 0.583+0.025
−0.025 0.583+0.024

−0.025 0.5769+0.0079
−0.0080 0.5769+0.0079

−0.0079 0.5793+0.0019
−0.0019

Runtime 4.02hr 1.56hr 4.40hr 3.14hr 4.52hr//3.15hr
Acc. rate 0.19 0.23 0.14 0.25 0.18//0.23
R− 1 0.0093 0.0098 0.0051 0.0084 0.0091//0.0090
(R− 1)95%CL 0.0827 0.0764 0.0944 0.0642 0.0940//0.0800

We observe that MCMC provides tighter and more accurate constraints. However, the trained
Neural Network can generate 8000 samples in approximately ten seconds which it turns out to be
10000 times faster than MCMC for this dataset 1. Runtime and metrics for convergence in MCMC
are shown in Table 1. As expected, the polarization combined with temperature data shifts the
values obtained from temperature alone and enhances the accuracy in all parameters (columns 1 and

1We run all single MCMC experiments in a CPU Intel Core i7-3840QM with clock speed of 2.80GHz, while
the BNN was trained in a GPU: GeForce GTX 1080 Ti.
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Figure 2: Graphical representation of convergence in MCMC using non-informative priori (MCMC)
and a precomputed covariance matrix from VI (covarBNN). (Top) Gelman-Rubin values with respect
to the acceptance step. (Bottom) Acceptance rate with respect the acceptance step. Notice that using
a proposal covariance matrix takes shorter time for chains to converge.

3). Furthermore, a well-converged chain is also observed via the Gelman-Rubin R − 1 parameter
and its standard deviation at 95% confidence level interval (R − 1)95%CL (the smaller the better).
The qualitative correlations among parameters as obtained from BNNs are mostly analogous to the
MCMC ones (Fig. 1), showing that a multi-channel BNN is able to handle the complexities involved
in this kind of analysis and additionally to use the polarization information to break cosmological
degeneracies. Nonetheless, although 10000 times slower, the MCMC it is able to better quantify
the uncertainty. This is especially true when using the power spectrum of the full map, and the
intervals are an order of magnitude more accurate than those computed by VI (rightmost column of
Table 1). On the other hand, we can also combine MCMC and VI leveraging the advantages of both
methods. Such topic has attracted a lot of attention in the recent literature Salimans et al. [2015],
Thin et al. [2020]. A straightforward approach to speed up MCMC algorithms consists in using the
covariance matrix constructed from the chains of the trained Neural Network as proposal for the
distribution of the MCMC. In fact, it is known that a good estimate of the covariance matrix for the
parameters increases the acceptance rate leading to significantly faster convergence Lewis [2013]. In
Table 1, we compare the runtime for the MCMC with and without a precomputed covariance obtained
from BNN. As we can see from the table, proposal covariances from BNNs (covarBNN) speed up
convergence in MCMC reducing the computational time for all datasets (Temperature, Polarization
and full sky maps). In Fig. 2 we report MCMC convergence diagnostic quantities such as R − 1
and the acceptance rate per iteration. The stopping rule implemented in cobaya ensures that the
Gelman-Rubin R− 1 value and its standard deviation at 95% confidence level interval (R− 1)95%CL

computed from different chains (four in our case), satisfy the convergence criterion R − 1 < 0.01
twice in a row, and (R− 1)95%CL < 0.2 respectively to stop the run, Torrado and Lewis [2020]. For
the Temperature signal alone, the Markov chains achieve a steady state in about 2000 steps working
with the covarBNN proposal while it usually takes more than 5000 steps instead with the vanilla
MCMC. This behavior can also be explained by observing the acceptance rate in Fig. 2 (bottom),
the red curve (TTcovarBNN) quickly approaches a considerably high acceptance rate, eventually
converging at around 0.23 (which is a standard value for which we expect to have a decent acceptance
rate Roberts et al. [1997]). An analogous trend can be seen for the polarization case.
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5 Discussion

In this paper we show that MCMC algorithms excel at quantifying uncertainty with respect to BNNs
models, although the latter is about 10000 times faster at inference. Given these properties, we
showed an approach in which the covariance matrix efficiently estimated from the BNNs samples,
significantly enhance the acceptance rate in MCMC yielding faster convergence. A limitation of this
method is the use of partial CMB maps that prevent the access to large scales correlations, leading to
large uncertainties and possibly introducing a bias in the prediction of the cosmological parameters
sensible to such scales. It would be interesting (and more of a fair comparison) to compare MCMC for
a full sky with respect to spherical neural architectures Krachmalnicoff and Tomasi [2019], Perraudin
et al. [2019], Cohen et al. [2018] which can extract large scale signals correlations, thus determining
if Deep Learning methods can achieve a similar level of precision as compared with MCMC. As a
future work, we also expect to assess the performance of this method with respect to other MCMC
modifications such as a Hamiltonian Monte Carlo.

Broader Impact

Combining the speed of Bayesian Neural Networks with the accuracy of MCMC algorithms results
in potential Bayesian inference methods for upcoming cosmological observation. Additionally, the
network built in this work allows to adaptively extract complicated correlations when performing
inference without assuming a priori summary statistics such as power spectrum or higher order
spectra (such as bispectrum, trispectrum or others). This work presents an example for how machine
learning could be used in the physics community to improve classical inference methods.
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