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Abstract

MCMC algorithms are commonly used for their versatility in sampling from com-
plicated probability distributions. However, as the dimension of the distribution
gets larger, the computational costs for a satisfactory exploration of the sampling
space become challenging. In this work we show an alternative way of performing
adaptive MCMC, by using the outcome of Bayesian Neural Networks(BNNs) as the
initial proposal for MCMC. This combined approach increases the acceptance rate
in the Metropolis-Hasting algorithm and accelerate the convergence of the MCMC
while reaching the same final accuracy. We demonstrate the main advantages of
this approach by constraining the cosmological parameters directly from CMB.

Dataset and Network

Following [3], we use 50.000 images related to the CMB maps projected in 20×
20 deg2 patches in the sky for training the BNNs. These images have a dimensions
(256,256,3), where the last channel stands for the Temperature (channel=0) and
Polarization (channel=1,2), and each image corresponds to a specific set value
of some cosmological parameters. The BNN was implemented in TensorFlow-
Probability, and the same version of the VGG architecture along with the presence
of Flipout as it was shown in [3] was used in this paper. Finally, we used the
calibration method introduced in [2] where α-divergence with α = 1 has been
included at the top of the BNN.

Method

The method shown here can be seen as a novel way to perform adaptive MCMC in
which the output distribution of the BNNs serves as a proposal distribution for the
MCMC. The experiments were run in the cobaya software [5], with the likelihood
given by [6]
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where Ĉl is the power spectrum of the CMB patches obtained with Lens-Tools [4],
and Cl the theoretical model. Cobaya accepts the cosmological parameters as
input, compute Cl via CLASS [1] and when the Markov chains have enough points
to provide reasonable samples from the posterior distributions, the simulation stops
and it return the chains. We run two MCMC experiments taking into account the
power spectrum of the CMB maps. In the first MCMC experiments we used the
full sky map, while in the second one, we computed the power spectra for CMB
patches and used them as an input in cobaya package.

Results

Results of the conditional distributions for the predicted parameters are displayed
in Fig. 1 where we compared the MCMC results with the calibrated BNNs (on
the CMB patches). We observe that MCMC provides tighter and more accurate
constraints. However, the trained Neural Network can generate 8000 samples in
approximately ten seconds which it turns out to be 10000 times faster than MCMC
for this dataset.
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Fig. 1: Marginalized parameter constraints obtained from temperature maps (TT) and combined temperature with polarization (POL)

using MCMC and the best BNN model. The black line stand for the real value: ωb = 0.0201, log(1010As) = 3.6450 and ωcdm = 0.1736

taken from the test dataset.

The Statistics and Parameters 95% intervals for the minimal base-ΛCDM model from our
synthetic CMB dataset using non-informative prior (MCMC) and a precomputed covariance
matrix from VI (covarBNN) are shown in the following table. The last column reports the
metrics using the Full CMB map. The bold values in the last column correspond to the
implementation of a proposal posterior distribution from VI. Although the full sky gives the
smallest credible region, MCMC is 10000 times slower than VI. The real value considered is
the same as specified in Fig. 1.

Statistics for various MCMC sampling configurations
Metrics Temperature map Temperature+Polarization map

MCMC covarBNN MCMC covarBNN Full-sky
ωb 0.0190+0.0013

−0.0013 0.0190+0.0012
−0.0012 0.01967+0.00066

−0.00066 0.01968+0.00064
−0.00064 0.02009+0.00010

−0.00010
ln(1010As) 3.633+0.031

−0.031 3.633+0.031
−0.030 3.648+0.015

−0.015 3.648+0.015
−0.016 3.6449+0.0027

−0.0027
ωcdm 0.171+0.011

−0.011 0.170+0.011
−0.011 0.1734+0.0031

−0.0032 0.1734+0.0031
−0.0031 0.1736+0.0009

−0.0009
ΩΛ 0.583+0.025

−0.025 0.583+0.024
−0.025 0.5769+0.0079

−0.0080 0.5769+0.0079
−0.0079 0.5793+0.0019

−0.0019
Runtime 4.02hr 1.56hr 4.40hr 3.14hr 4.52hr//3.15hr
Acc. rate 0.19 0.23 0.14 0.25 0.18//0.23
R− 1 0.0093 0.0098 0.0051 0.0084 0.0091//0.0090
(R− 1)95%CL 0.0827 0.0764 0.0944 0.0642 0.0940//0.0800

Convergence in MCMC

In Fig. 2 we report MCMC convergence diagnostic quantities such as R − 1
and the acceptance rate per iteration. The stopping rule implemented in cobaya
ensures that the Gelman-Rubin R − 1 value and its standard deviation at 95%
confidence level interval (R − 1)95%CL computed from different chains (four
in our case), satisfy the convergence criterion R − 1 < 0.01 twice in a row,
and (R − 1)95%CL < 0.2 respectively to stop the run, [5]. For the Temperature
signal alone, the chains achieve a steady state in about 2000 steps working
with the covarBNN proposal while it usually takes more than 5000 steps instead
with the vanilla MCMC. This behavior can also be explained by observing the
acceptance rate in the red and green curves (TTcovarBNN, POLcovarBNN)
quickly approaches a considerably high acceptance rate.

Fig. 2: Graphical representation of convergence in MCMC using non-informative priori (MCMC) and a precomputed

covariance matrix from VI (covarBNN). (Top) Gelman-Rubin values with respect to the acceptance step. (Bottom)

Acceptance rate with respect to step.

Conclusions

In this work we show that MCMC algorithms excel at quantifying uncertainty
with respect to BNNs models, although the latter is about 10000 times faster
at inference. Given these properties, we showed an approach in which the
covariance matrix efficiently estimated from the BNNs samples, significantly
enhance the acceptance rate in MCMC yielding faster convergence.
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