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Abstract
Consistent and accurate estimation of stellar parameters is of great importance
for information retrieval in astrophysical research. The parameters span a wide
range from effective temperature to rotational velocity. We propose to estimate
the stellar parameters directly from spectral signals coming from the HARPS-N
spectrograph pipeline before any spectrum-processing steps are applied to extract
the 1D spectrum. We propose an attention-based model to estimate the stellar
parameters, which estimate both mean and uncertainty of the stellar parameters
through estimation of the parameters of a Gaussian distribution. The estimated
distributions create a basis to generate data-driven Gaussian confidence intervals
for the estimated stellar parameters. We show that residual networks and attention-
based models can estimate the stellar parameters with high accuracy for low
Signal-to-noise ratio (SNR) compared to previous methods. With an observation of
the Sun from the HARPS-N spectrograph, we show that the models can estimate
stellar parameters from real observational data.

1 Introduction

Currently, there exists huge variation in the different techniques used to estimate stellar parameters,
ranging from decision tree architectures to tailor-made algorithms made for specific astrophysical
surveys [1, 2, 3, 4, 5]. Previous research that has applied artificial neural networks to estimate stellar
parameters have focused on effective temperature (Teff), surface gravity (log g), and metalicity (Z)
and they apply their models on the extracted 1D stellar spectrum of the CCD spectral image [6, 7, 8].
The method used for the extraction of the 1D spectrum introduces biases and assumption into the
spectrum resulting in biased estimation of stellar parameters, which leads to different research groups
obtaining different results when observing the same stars [9]. We argue that one should strive to use
an end-to-end deep learning approach, which can estimate appropriate pre-processing steps inherent
in the modelling. The closest thing we get to an end-to-end approach is using the data from the
HARPS-N spectrograph pipeline [10]. In this paper, we propose to use the 2D spectral signal coming
from the HARPS-N pipeline to estimate the stellar parameters and we present methods for doing so.
The main contributions of our approach are:

• The elimination of spectral pre-processing to extract the 1D spectra, as we apply our deep
learning models directly to the 2D signal from the HARPS-N pipeline.

• Improved prediction accuracies for the effective temperature, surface gravity, and metallicity
compared to other data-driven approaches as-well-as inclusion of stellar rotational velocity
estimation.

• Quantification of uncertainty in estimations of the stellar parameters. The estimated uncer-
tainty provides a basis to create data-driven confidence intervals.
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• An attention-based model which attends to the underlying elements of an input spectrum.

2 Data

Previous related research on data-driven stellar parameters estimation have generated synthetic
spectra to train and estimate the performance of machine learning models [6, 7, 8]. The use of
synthetic spectra provides a unique opportunity to generate a large set of labelled data, as the details
of the spectra are known a priori and the SNR can be varied to mimic different telescope exposure
times [7, 8]. A drawback of this approach is that the trained weights will be biased towards the
physical model generating the data, as there exists a synthetic gap between the feature distributions
of the synthetic and the observed spectra [8]. In this work, we sample the synthetic spectra from a
grid of model atmospheres using the ATLAS9 code [11]. The original code is described in detail
in [12] and was updated to include new opacity distribution functions as outlined in [13]. The grid
was uniformly sampled using 26 Teff ranging from 3500 K to 9750 K with a step-size of 250 K, 11
log g ranging from 0.0 to 5.0 with a step-size of 0.5, and 7 Z ranging from -2.5 to +0.5 in step-sizes
of 0.5. The grid was extended by including 16 different rotational velocities (V sin i) ranging from 0
km/s to 30 km/s with a step-size of 2 km/s and was applied using Gray’s methods [14]. To generate
synthetic spectra images similar to those coming from the HARPS-N pipeline, we split the spectra up
into the échelle orders, and stitch them as an image. We limit the wavelength interval between 5050
to 5350 Å, which corresponds to 8 different èchelle orders. We interpolate the wavelengths of the 1D
spectrum to match the 2D wavelengths, such that they correspond to the HARPS-N pipeline. We then
add a linear slant across each order to mimic the observations from the HARPS-N pipeline. Initially,
we sample the model spectra without any noise, such that we can add Gaussian noise corresponding
to different SNR during training [8]. The parameters generated are discrete, but we can interpolate
linearly between samples to create new observations, not on the grid, again similar to the procedure
in [8].

Figure 1: This figure highlights the different approaches. Left: A sample of a 1D model spectrum.
Middle: A sample of a 1D model spectrum similar to the HARPS-N pipeline. Right: The spectral
image of the spectrum in the middle.

3 Method

In this section, we describe how we to capture heteroscedastic uncertainty in the estimated stellar
parameters, and present the attention-based architecture used in this work.

3.1 Heteroscedastic Uncertainty Estimation

Heteroscedastic regression assumes that the uncertainty of observations vary with input x [15]. This
uncertainty in the observations can be quantified by the distribution p(y|x), where the expected value
is considered the best estimate of the parameters, and the variance of the distribution describes the
uncertainty [16]. We then learn the distribution using parameters θ and parameterise the distribution
as a Gaussian.

p(y|x, θ) = N
(
µθ(x),Σθ(x)2

)
(1)

In order to estimate the parameters in the function in Equation 1, we minimise the negative log-
likelihood [15]:

L(θ) =
N

2
log |Σθ(x)|+ 1

2

N∑
i=1

(yi − µθ(xi))T Σθ(x)−1 (yi − µθ(xi)) (2)
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We only consider the case where Σ is a diagonal matrix, restricting the variance within the single
label estimation, instead of a full covariance matrix. We denote the diagonal covariance matrix with
the vector σθ(x).

3.2 Attention-based model

The soft-attention model used in this work is inspired by the architecture from [17], in combination
with the attention blocks presented in [18, 19]. We construct an attention architecture which uses any
number of intermediate feature maps xn from a convolutional neural network in combination with a
global feature map g (The last layer in the convolutional neural network), to compute an attention
map in attention blocks [17]. The attention map αn ∈ [0, 1] is used to identify salient features in the
input as the output of an attention block is the element-wise multiplication of the input feature-map
and the attention map: x̂n = an · xn. We let Fn denote the number of channels in a given feature
map. Formally we can compute the attention map an as follows.

qlatt = ψT
(
σ1

(
W T

xxn +W T
g g + bxg

))
+ bψ

αn = σ2
(
qlatt (xn, g; Θatt)

) (3)

where σ1(x) is the activation function of the neural network, and σ2(x) is the softmax operation,
such that the attention map sums to one [18]. The set of parameters Θatt contains the convolutional
weights W x ∈ RFx×Fint and W g ∈ RFg×Fint , which are used to linearly transform the input
tensors using a channel-wise 1 × 1 × 1 convolution. The weights ψ ∈ RFint×1 combines the
features from all the channels into a 1-channel attention map. In addition we also include a bias term
bψ ∈ RFint in Θatt. The parameters of the attention block (the convolutional layer) are trained using
standard back-propagation [18]. In order to ensure that all the attention maps αn learn meaningful
features, we average the outputs of the attention blocks in order to estimate the final µθ(x) and σθ(x).
The reader is referred to [17, 18, 19] for more in depth explanation of the architecture and attention
blocks.

4 Experiments and results

This section summarises the results obtained on a test set of 5667 synthetic model spectra. We use
the Adam [20] variant of stochastic gradient descent with a learning rate of 0.0001 to optimise the
models. We train the models for 750 epochs and for the last 50 epochs we decay the learning rate by
a γ of 0.1. In order to increase performance for low SNR, we also train a denoising auto-encoder
(DAE) [21] to denoise samples before we train a supervised learning model. We train the DAE for
1500 epochs. We use the AdamW [22] variant of SGD with a learning rate of 0.0003; we decay the
learning rate the as above. The residual network consists of 5 residual blocks [23] and three fully
connected layers. The attention-network contains three attention blocks and 11 convolutional layers.
We add Gaussian noise to simulate an SNR ≈ 20. In Table 1 we present the MAE performance of the
models on the 4 stellar parameters.

SNR Model Teff log(g) Z V sin i
20 Residual-network 76.9 0.138 0.055 0.71
20 Attention-network 73.0 0.135 0.053 0.69
20 DAE-Residual-network 72.3 0.133 0.052 0.67
20 DAE-Attention-network 70.9 0.134 0.049 0.57

200 Cannon2 [24] 46.8 0.066 0.036 -
200 StarNet [8] 31.2 0.053 0/.025 -
100 Residual-network† 19.5 0.053 0.026 0.30
100 Attention-network† 12.9 0.045 0.013 0.15

Table 1: Mean-Absolute error based on the mean prediction from models. † models are trained on a
limited data-set to match the parameter ranges presented in previous related work [8]. The limited
data-set only contains Teff between 4000K and 6000K, and other parameters stay the same.

From Table 1 we see that using the DAE to denoise samples increase the performance when the SNR
≈ 20. The reader should note that [8, 24] uses a different data-pipeline, so direct comparison should
be performed with caution.
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4.1 Uncertainty estimation

In order to assess the quality of the estimated standard deviations, we compare the percentages of
residuals within 1 or 2 standard deviations as an evaluation of the uncertainty estimation.

Gaussian Residual-network DAE-Residual network Attention-network
|ε| < σθ(x) 68.2% 79.9% 77.9% 65.5%
|ε| < 2σθ(x) 95.1% 98.4% 97.9% 93.4%

Table 2: Table showing percentages of residuals for the parameters that are within µ± σ and µ± 2σ.
The models are trained with SNR ≈ 20

From Table 2 we see that the estimated distributions approximate the Gaussian theoretical values,
making us conclude that the estimated standard deviations can be used to create Gaussian confidence
intervals.

4.2 HARPS-N observation of the Sun

In order the evaluate the synthetic gap, we assess the models on an observation of the Sun coming from
the HARPS-N spectrograph. Due to the extreme apparent brightness of the Sun, these observations
obtain high SNR of ≈ 200 [25, 26]. All real observations contain telluric lines (absorption from
Earths atmosphere), which is not present in the synthetic data.

SNR Model Teff log(g) Z V sin i
200 Ground Truth 5750 4.44 0 2
100 Residual-network 5791.6± 140.1 4.72± 0.28 0.035± 0.15 0.762± 1.76
100 Attention-network 5325.2± 10.0 2.15± 0.04 −0.576± 0.01 5.226± 0.40

Table 3: Estimated values for the Sun observation. Confidence bands are estimated using Gaussian
confidence intervals

From Table 3 we can see that the models can estimate the parameters of the Sun, and use the estimated
uncertainty to setup confidence intervals. We see that the attention model is more susceptible to the
synthetic gap, whereas the residual network includes dropout in the last dense layers, which allows
for some uncertainty in the input features, as e.g. addition of telluric lines in a spectrum.

4.3 Visual inspection of attention

Finally, we visualise the attention feature maps αn across the 3 different blocks; illustrating the
interpretation possibilities in the attention blocks. We also include annotations for some of the
elements used in traditional methods for stellar parameter estimation such as the magnesium b lines.

Figure 2: Visualisation of attention α from the 3 different blocks.
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5 Conclusion

In this work, we focused on data-driven estimation of stellar parameters based on the spectral signal
directly from the HARPS-N pipeline. Our models can estimate uncertainties, and we can use a
DAE to enhance model performance for low SNR. We show that the attention model can attend to
the underlying elements in a spectrum. We suggest a semi-supervised learning approach, where a
real-observations and synthetic spectra could make models more robust to the synthetic gap.

Broader Impact

While it is still essential for physical science to reason about stellar parameters, e.g. by looking at the
absorption lines of a spectrum to see the composite elements, we have here focused on an end-to-end
deep learning approach and provided methods for estimating the stellar parameters consistently and
accurately. We see great opportunities for researchers to apply the methods here to investigate the
Universe efficiently and we believe that there are many areas within the physical sciences which
can benefit from this research, such as the stellar astrophysical research on large-scale statistics. A
specific task which this research contribute to is when the Signal to noise ratios of a sample is lower
than anticipated, then the methods provided here can be used to increase the usability of the sample,
by removing undesired noise and get an unbiased estimate of the stellar parameters.
There are important considerations to take into account when using synthetic spectra to train and
evaluate models. Models trained with the synthetic spectra, will all be biased as the models inherit the
synthetic gap between real observations and synthetic spectra. We, therefore, argue that researchers
within this field, should keep this in mind and understand the biases and limitations related to the use
of synthetic spectra. We believe future research could apply a combination of real observations and
different synthetic spectra to account for this bias.
The potential risk of increasing the amount of deep learning into the astrophysical research areas
could lead to a neglect of the physical knowledge required to interpret the spectra, which potentially
will lead to a loss of physical knowledge. We, therefore, encourage future research to continue
the path towards an end-to-end deep learning method, while acknowledging the importance of the
physical composition of the underlying spectra.
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