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e \We present methods and results from estimating stellar parameters
from the HARPS-N data-pipeline using deep learning models. This
approach eliminates the need for spectral pre-processing steps to ex-
tract the 1D spectra.

e \We quantify the uncertainty in estimations of the stellar parameters.

-

I'he estimated distribution provides a basis to create data-driven con-

fidence intervals.
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The data-set 1s altered to mimic a complete end-to-end approach

e The use of synthetic spectra provides a unique opportunity to gener-
ate a large set of labelled data.

e Addition of the échelle orders to mimimec data comming from the
HARPS-N data pipeline.
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FIGURE 1: Left: A sample of a 1D model spectrum Middle: A sample of a 1D model spectrum
similar to the HARPS-N pipeline, by inclusion of the echelle orders Right: The spectral image
of the spectrum in the middle
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Heteroscedastic Uncertainty Estimation

We assume that the uncertainty in the stellar parameters y varies with
the input x, and we model this uncertainty through a Gaussian distri-
bution.

p(ylx,8) = N (pa(x), Zo(x)°) (1)

We minimise the negative log-likelihood through the parameters 6 us-
ing SGD.

£(6) = S log Z(0)] +5 3 (= palx0)” Sox)™ (1 — palx0)

(2)
Attention Model
e Uses an intermediate feature map =z, from a convolutional neural

network in combination with a global feature map g to compute an
attention map «, € [0, 1]
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e We compute an attention map «, € |0, 1], the output of an attention
block is the element-wise multiplication of an the input feature-map
and the attention map: x,, = a,, - ©,.

Gy = P! (on (W) x,+ W/ g +b,y)) + by
Qp = 02 (qétt (T, g: @att))

(3)
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FIGURE 2: Figure showing the overall architecture of the attention model used in this work.
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Performance metrics

SNR Yp(x)  Model Teog log(g) Z Vsint
20 Diagonal Residual-network 76.9 0.138 0.065 0.71
20 Diagonal Attention-network 73.0 0.135 0.0563 0.69

20 Diagonal DAE Residual-network  72.3 0.133 0.052 0.67
20 Diagonal DAE Attention-network 70.9 0.134 0.049 0.57
20 Full Residual-network 83.8 0.143 0.060 0.75
20 Full Attention-network 79.2 0.146 0.055 0.72
20 Full DAE Residual-network  89.1 0.150 0.060 0.72
20 Full DAE Attention-network 72.9 0.137 0.049 0.58

200 - Cannon?2 [1] 46.8 0.066 0.036 -
200 - StarNet [2] 31.2  0.053  0.025 -
100 Diagonal Residual-network! 19.5 0.053  0.026 0.30

100 Diagonal Attention-network! 12.9 0.045 0.0153 0.15

TABLE 1: Mean-Absolute error based on the mean prediction from models.  models are trained
on a limited data-set to match the parameter ranges presented in previous related work |2].

Based on the results present in Table 1, we here continue with the
results from the attention model, with a diagonal covariance matrix

Uncertainty Estimation

Estimated standard deviations
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FIGURE 3: The estimated standard deviation from the residuals as a function of the true pa-
rameters.
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e \We conclude that the estimated uncertainty is depend on x, which
shows that the assumption of heteroscedasic variance across the input
18 valid.

e We find that that the estimated distributions approximate the Gaus-
sian theoretical values, making us conclude that the estimated stan-
dard deviations can create data-driven Gaussian confidence intervals

Model € < Mg(x) € < 2X(x)
(Gaussian 68.2% 95.1%
Residual-network 79.9% 98.4%
DAE-Residual network 77.9% 97.9%
Attention-network 65.5% 93.4%

TABLE 2: Table showing percentages of observations that are within pu 4 Yg(x) and p +2¥g(x).
The models are trained with SNR ~ 20.

Test on HARPS-N observation

Model Tog log(g) / Vsin
HARPS-N 5750 4.44 0 2
Residual-net 5791.6 4 140.1 4.724+0.28 0.035 4+ 0.15 0.762 £ 1.76
Attention-net 5325.2 4 10.0 2.15 £ 0.04 —0.576 4 0.01 5.226 4 0.40

TABLE 3: Estimated values for the Sun observation. Confidence bands are estimated using
Gaussian confidence intervals.

Visualisation of attention map

The magnesium b have spectra lines at 5172 A and is often used by
traditional methods when estimating the stellar parameters. We find
that he attention-network is attending to this element, based on the
high activation of the attention feature map « at this absorption line
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[ Conclusions & Outlook |

e We have focused on a data-driven estimation of stellar parameters
based on the spectral signal directly from the HARPS-N pipeline.

0.0 - .13

e The estimation of a multivariate Gaussian also lays the groundwork
for future research ideas to explore ideas of full Bayesian approaches
such as MCMC or variational inference methods.

e [ he attention models provide a way to reason about the importance
of the different composite elements of a spectrum.
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