

# Consistent and Accurate Estimation of Stellar Parameters from HARPS-N Spectroscopy

| SNR | $\Sigma_{\theta}(\mathbf{x})$ | Model                                             | $T_{\rm eff}$ | $\log(g)$ | Ζ     | $V\sin i$ |
|-----|-------------------------------|---------------------------------------------------|---------------|-----------|-------|-----------|
| 20  | Diagonal                      | Residual-network                                  | 76.9          | 0.138     | 0.055 | 0.71      |
| 20  | Diagonal                      | Attention-network                                 | 73.0          | 0.135     | 0.053 | 0.69      |
| 20  | Diagonal                      | DAE Residual-network                              | 72.3          | 0.133     | 0.052 | 0.67      |
| 20  | Diagonal                      | DAE Attention-network                             | 70.9          | 0.134     | 0.049 | 0.57      |
| 20  | Full                          | Residual-network                                  | 83.8          | 0.143     | 0.060 | 0.75      |
| 20  | Full                          | Attention-network                                 | 79.2          | 0.146     | 0.055 | 0.72      |
| 20  | Full                          | DAE Residual-network                              | 89.1          | 0.150     | 0.060 | 0.72      |
| 20  | Full                          | DAE Attention-network                             | 72.9          | 0.137     | 0.049 | 0.58      |
| 200 | -                             | Cannon2 [1]                                       | 46.8          | 0.066     | 0.036 |           |
| 200 | -                             | StarNet $[2]$                                     | 31.2          | 0.053     | 0.025 |           |
| 100 | Diagonal                      | Residual-network <sup><math>\dagger</math></sup>  | 19.5          | 0.053     | 0.026 | 0.30      |
| 100 | Diagonal                      | Attention-network <sup><math>\dagger</math></sup> | 12.9          | 0.045     | 0.013 | 0.15      |

- is valid.

| Model                | $\epsilon < \Sigma_{\theta}(\mathbf{x})$ | $\epsilon < 2\Sigma_{\theta}(\mathbf{x})$ |
|----------------------|------------------------------------------|-------------------------------------------|
| Gaussian             | 68.2%                                    | 95.1%                                     |
| Residual-network     | 79.9%                                    | 98.4%                                     |
| DAE-Residual network | 77.9%                                    | 97.9%                                     |
| Attention-network    | 65.5%                                    | 93.4%                                     |
|                      |                                          |                                           |

TABLE 2: Table showing percentages of observations that are within  $\mu \pm \Sigma_{\theta}(\mathbf{x})$  and  $\mu \pm 2\Sigma_{\theta}(\mathbf{x})$ . The models are trained with SNR  $\approx 20$ .

### Test on HARPS-N observation

| Model         | T <sub>eff</sub>   | $\log(g)$     | Ζ                 | $V \sin i$       |
|---------------|--------------------|---------------|-------------------|------------------|
| HARPS-N       | 5750               | 4.44          | 0                 | 2                |
| Residual-net  | $5791.6 \pm 140.1$ | $4.72\pm0.28$ | $0.035 \pm 0.15$  | $0.762 \pm 1.76$ |
| Attention-net | $5325.2 \pm 10.0$  | $2.15\pm0.04$ | $-0.576 \pm 0.01$ | $5.226 \pm 0.40$ |

TABLE 3: Estimated values for the Sun observation. Confidence bands are estimated using Gaussian confidence intervals

## Visualisation of attention map

The magnesium b have spectra lines at 5172 A and is often used by traditional methods when estimating the stellar parameters. We find that he attention-network is attending to this element, based on the high activation of the attention feature map  $\alpha$  at this absorption line



- such as MCMC or variational inference methods.
- of the different composite elements of a spectrum.

[1] Andrew Casey, David W. Hogg, Melissa K. Ness, Hans-Walter Rix, Anna Y. Q. Ho, and Gerry F. Gilmore. The cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses. 2016.

deep neural networks in the analysis of stellar spectra, 2017.

nent of Applied Mathematics and Computer Science

• We conclude that the estimated uncertainty is depend on  $\mathbf{x}$ , which shows that the assumption of heteroscedasic variance across the input

• We find that that the estimated distributions approximate the Gaussian theoretical values, making us conclude that the estimated standard deviations can create data-driven Gaussian confidence intervals

• We have focused on a data-driven estimation of stellar parameters based on the spectral signal directly from the HARPS-N pipeline.

• The estimation of a multivariate Gaussian also lays the groundwork for future research ideas to explore ideas of full Bayesian approaches

• The attention models provide a way to reason about the importance

### References

2] Sebastien Fabbro, Kim Venn, Teaghan O'Briain, Spencer Bialek, Collin Kielty, Farbod Jahandar, and Stephanie Monty. An application of