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Abstract

Finding water(-ice) on the lunar surface is key to enabling a sustainable human presence
on the Moon and beyond. There is evidence that water-ice is abundant in and around
the Moon’s Permanently Shadowed Regions (PSRs), however, direct visual detection
has not yet been possible. Surface ice or related physical features could potentially
be directly detected from high-resolution optical imagery, but, due to the extremely
low-light conditions in these areas, high levels of sensor and photon noise make this
very challenging. In this work we generate high-resolution, low-noise optical images
over lunar PSRs by using two physics-based deep neural networks to model and remove
CCD-related and photon noise in existing low-light optical imagery, potentially paving
the way for a direct water-ice detection method.

1 Introduction

In recent years the international space community has gained significant momentum for continuing the
exploration of the Moon and establishing a sustainable presence, with multiple national space agencies and
private organizations working towards this goal (Neal et al., 2009). A critical objective of these efforts is to
identify potential lunar water resources, because water is a key element for life support and a source of fuel
(Hydrogen and Oxygen) (ESA, 2019). Lunar water is also a primary target for scientific investigations,
such as studies of the evolution of our solar system.

Recent missions have found evidence that suggests water(-ice) exists on the Moon and could be abundant.
Amongst others, observations from Chandrayaan-1 (Li et al. (2018); Pieters et al. (2009)), the Lunar
Reconnaissance Orbiter (LRO, Hayne et al. (2015); Fisher et al. (2017); Hayne et al. (2020)), the Lunar
Crater Observation and Sensing Satellite (LCROSS, Colaprete et al. (2010)), and the airborne SOFIA
observatory (Honniball et al. (2020)) indicate that water likely exists in and around topographic depressions
at the lunar poles, mainly in the so-called Permanently Shadowed Regions (PSRs).

Whilst these observations are a significant step forward, the direct detection of (surface) water-ice or
related physical features in PSRs has not yet been possible. The presence of bright ice could potentially be
directly detected using high-resolution optical imagery. Currently the best imagery of the polar regions is
produced by LRO’s Narrow Angle Camera (NAC) with a nominal (polar) spatial resolution of 1 to 2 m/pixel
(Robinson et al., 2010; Humm et al., 2016). However, due to the extremely low lighting conditions over
PSRs, Charge-Coupled Device (CCD) sensor-related and photon noise dominate these images, strongly
limiting our ability to make meaningful observations.

In this work we generate high-resolution, low-noise images of PSRs by training two deep neural networks
to model and remove CCD and photon noise in these images, significantly improving their quality. We
name our method Hyper-effective nOise Removal U-net Software (HORUS).
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Figure 1: Performance of HORUS over 3 example PSRs, compared to the current calibration routine
(ISIS) (Humm et al., 2016; Gaddis et al., 1997). Colour bar shows the estimated surface signal S for the
DestripeNet+PhotonNet plot. Raw/ISIS image credits to LROC/ASU/GSFC.

2 Methods

The LRO NAC takes 12-bit panchromatic optical images and consists of two nominally identical, 5064-
pixel line-scan CCD cameras oriented perpendicular to the direction of flight of the satellite (Robinson
et al., 2010). Each camera has two operating modes, “regular” and “summed”, where the summed mode
sums adjacent pixels and is typically used to maximize the signal received over poorly lit regions of the
Moon. Over 10 years of operation the LRO NAC has captured over 2 million images, covering the entire
surface multiple times over.

Figure 1 shows example raw NAC images captured over 3 example PSRs at the lunar south pole. Whilst
they receive no direct sunlight, PSRs can be illuminated by indirect light scattered from their surroundings.
In this extremely low-light setting NAC images are dominated by CCD noise and photon noise, which
is due to the inherent randomness of photons arriving at the CCD. Informed by the work of Humm et al.
(2016) and standard CCD theory (Chromey, 2016), in this work we assume that this noise can be described
by the following physical model,

I = S +Np +Nd +Nb +Nr, (1)

where I is the raw image detector count, S is the mean photon signal, Np is the stochastic photon noise,
which obeys a Poisson distribution with an expected value equal to S, Nd is stochastic dark current noise,
which is generated by thermally-activated electrons in the CCD and obeys a Poisson distribution, Nb is
the dark bias, which is deterministic and due to a voltage offset which varies pixel-to-pixel, and Nr is the
readout noise. Of these noise sources, the photon noise and dark bias are considered the most dominant
(Humm et al., 2016) and are the focus of this study.

The current calibration routine for the NAC images (ISIS, or Integrated Software for Imagers and Spec-
trometers (Humm et al., 2016; Gaddis et al., 1997)) only attempts to remove the dark bias from each
image, by subtracting a cyclic trend from its set of 60 masked pixels and a single library dark calibration
frame. Examples images after this calibration are shown in Figure 1: we observe that photon noise and a
significant amount of dark bias (residual stripes) are still present.

In this work we remove both photon and dark bias noise from the images by using two deep neural
networks, collectively named HORUS. The first network is called DestripeNet and it models the dark
bias. The input to the network is the camera metadata available at the time of image capture (listed in
Figure 2) and its output is a prediction of the dark bias frame. We train this network using a set of 100,000+
calibration images as labels, taken on the non-illuminated side of the Moon, where negligible photon signal
is present. We use a convolutional decoder network design, shown in Figure 2 (top). Thus, this network
learns a time-varying physics-based model of the CCD sensor.

The second network is called PhotonNet and it models photon noise in the images. The input to the network
is the image after DestripeNet has been applied and its output is a prediction of the mean surface signal S.
This network is trained using synthetically generated noisy images by taking 1 million randomly selected
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Figure 2: Physics-based HORUS denoising approach and noise model. Top: DestripeNet and PhotonNet
networks. DestripeNet uses a convolutional decoder design with 13 layers and 512 hidden channels to
model the dark bias frame Nb. PhotonNet uses a U-Net design with 4 down-sampling steps to remove
photon noise Np. Both networks are trained using an L2 loss function. PhotonNet operates on images
patches, whilst DestripeNet predicts by image line. Bottom: noise model used in this work, showing an
example dark calibration frame (Nb). Image credits to LROC/ASU/GSFC.
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Figure 3: 3D ray tracing and training distribution matching. Left: histogram of the secondary incidence
angle of scattered rays for 4 PSRs simulated using 3D ray tracing, compared to the distribution of solar
incidence angles in the training set for PhotonNet. Middle: A render of the secondary illumination radiance
for the Shackleton crater PSR; here the crater rim is a strong source of scattered light. Right: distribution of
photon counts over the re-scaled bright images used to train PhotonNet. Typically, PSRs have raw detector
counts I in the range 0-50 and we re-scale to this level.

bright, sunlit patches of the Moon, re-scaling them to low-lighting photon counts, adding Poisson noise to
them, and then learning to remove this noise. We use a U-Net design (Ronneberger et al., 2015), similar to
other low-light denoising approaches (Chen et al., 2018).

An important consideration is that the predictions of PhotonNet will be biased towards the distribution of
images it has been trained on. Whilst it is trained on images with direct solar illumination, it is intended
for use on images of PSRs, which are illuminated by secondary (backscattered) light only. In order to
match the training data to the test-time data as best we can, we carry out 3D ray tracing of 4 PSRs at the
south pole and plot the expected distribution of secondary illumination angle under typical illumination
conditions. We then match the distribution of solar incidence angles in our training images for PhotonNet
to this distribution. Ray tracing is performed using 30 m/pixel spatial resolution LRO Lunar Orbiter Laser
Altimeter elevation data (Riris et al., 2017) and a Lambertian bidirectional reflection function. Finally, to
account for possible differences in the two cameras and two operating modes, we train separate networks
for each possible configuration.

3 Results and Discussion

Histograms of the incidence angle of scattered rays from ray tracing are shown in Figure 3. We find that
these rays typically have incidence angles in the range 60 to 100 degrees (normal to the Moon’s sphere)
and our matched distribution of solar incidence angles in the training set is shown.

Example real-data test images of PSRs after training DestripeNet and PhotonNet are shown in Figure 1.
We find that DestripeNet removes more of the dark bias “stripes” in the images compared to the current
calibration routine, and PhotonNet significantly improves the image quality, removing the “graininess” of
the photon noise. We generate a test set of 100,000 unseen synthetic noisy images by adding samples of
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Baseline ISIS DestripeNet DestripeNet+PhotonNet

Mode Camera L1 / Peak signal-to-noise ratio (PSNR) / Structural similarity index measure (SSIM)

Normal Left 8.12 / 29.89 / 0.56 3.79 / 35.23 / 0.79 3.67 / 35.63 / 0.80 1.08 / 47.49 / 0.98
Right 9.23 / 29.18 / 0.53 3.79 / 35.31 / 0.79 3.70 / 35.62 / 0.80 1.09 / 47.62 / 0.98

Summed Left 7.75 / 30.33 / 0.59 3.73 / 35.37 / 0.80 3.63 / 35.75 / 0.81 1.20 / 46.76 / 0.97
Right 9.19 / 29.29 / 0.54 3.79 / 35.39 / 0.80 3.72 / 35.65 / 0.81 1.25 / 46.89 / 0.97

Table 1: Test set performance of HORUS. We compare to a baseline approach, where simply the mean
masked pixel value is subtracted from the raw image, and the current calibration routine (ISIS) (Humm
et al., 2016; Gaddis et al., 1997). The average performance over all images is reported.

Figure 4: Ground truth verification. The comparison of a non-HORUS sunlit and a HORUS shadowed
image (contrast and brightness-adapted) in a temporarily shadowed region indicates that our denoising
does not remove or add any physical features. Non-HORUS image credit to LROC/ASU/GSFC.

dark calibration images and photon noise to re-scaled sunlit images and report the performance of HORUS
on this dataset in Table 1. This table shows that HORUS significantly outperforms the current calibration
routine under all tested metrics for these images.

A key concern is whether our networks “hallucinate” or remove physical features from the images. To
help investigate this, we plot a non-HORUS sunlit image of a Temporarily Shadowed Region (TSR) and
compare this to a shadowed image with HORUS applied in Figure 4. Encouragingly, we find that HORUS
does not remove or add any incorrect physical features compared to the sunlit image.

4 Conclusion and Further Work

We have shown that it is possible to significantly enhance the quality of extremely low-light images of
PSRs on the Moon by using two physics-based deep neural networks to remove CCD and photon noise.
Our approach provides high-resolution, low-noise images which could help to directly detect water-ice.
We have run HORUS over 20+ PSRs and future work will analyse these images for surface-ice related
signals, as well as quantitatively assess the performance of HORUS using ground truth TSR images and
investigate joint training of the networks to further improve performance.

5 Broader impact

This work could significantly impact humanity’s plans for exploration of the lunar poles, helping to enable
a sustainable, long term presence on the Moon and beyond. First, our work could directly inform robotic
scouting missions to the poles, enabling identification of water(-ice)-related science targets and reducing
uncertainty when planning traverses into PSRs. Secondly, our work could support the planning and
execution of the upcoming NASA Artemis missions, which will see the first woman and the next man
operating around and potentially within lunar polar PSRs.
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