
INTRODUCTION
In recent years the international space community has gained significant
momentum for continuing the exploration of the Moon.

Water is a key resource for establishing and sustaining a human presence.

Water is likely to exist at the lunar poles, specifically inside the permanently
shadowed regions (PSRs) – topographic depressions which see no direct
sunlight.

However, direct detection of surface water-ice has not yet been possible.

Bright surface ice could potentially be detected using high-resolution optical
imagery from the Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO
NAC).

PROBLEM
However, due to the extreme low-light conditions, Charge-Coupled Device
(CCD) sensor–related noise and photon (Poisson) noise dominate these
images, strongly limiting our ability to make meaningful observations.
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LOW-LIGHT IMAGE ENHANCEMENT OF PERMANENTLY SHADOWED 
LUNAR REGIONS WITH PHYSICS-BASED MACHINE LEARNING

PHYSICAL CCD NOISE MODEL

We assume that an image captured by the LRO NAC can be formulated as

where I is the raw image in detector counts, S is the mean photon signal, Np is stochastic photon noise (Poisson-
distributed), Nd is stochastic dark current noise (Poisson-distributed, from to thermally activated charge carriers in the
CCD), Nr is readout noise and Nb is dark bias noise (deterministic, due to a pixel-to-pixel varying voltage offset applied).

We apply the two networks sequentially to
denoise the images:

• DestripeNet predicts the dark bias noise
Nb from the camera environment meta data
available at the time of image capture, and is
trained using 100,000+ dark calibration
frames as labels. It uses a convolutional
decoder design.

RESULTS
HORUS is able to significantly improve the quality of
both synthetically-generated and real low-light images.

We validate our approach by comparing HORUS
denoised shadowed images in Temporarily Shadowed
Regions (TSRs) to their corresponding overlapping
sunlit images.
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Importantly, PSRs can only be illuminated by secondary light scattered from their surroundings. In order to best match
the illumination conditions of the training data to these conditions, we match the distribution of solar incidence angles in
the sunlit training images for PhotonNet to the expected distribution of secondary illumination angles in PSRs estimated
from 3D ray tracing.
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SOLUTION
We use two physics-driven deep neural networks to model and remove CCD-related and photon noise in LRO NAC
images. We name the workflow Hyper-Effective Noise Removal U-Net Software (HORUS).

• PhotonNet predicts the photon noise Np in the image, and is trained by adding synthetic Poisson noise to 1M
randomly selected rescaled image patches of the lunar surface in normal sunlit conditions. It uses a U-Net architecture.

Distribution of solar incidence angle in training images 
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CONCLUSION
We have shown it is possible to significantly enhance extremely low-light images of PSRs on the Moon. Future work
will analyse these images for surface-ice related signals, quantitatively assess performance using TSRs, and
investigate joint training of the networks to improve performance.

ACKNOWLEDGEMENTS This work was completed as part of the 2020 NASA Frontier Development Lab (FDL). We would like to thank Julie Stopar and Nick Estes for
insightful comments on the NAC instrument, Eugene D’Eon for advice on the ray tracing, and all of the FDL reviewers and partners.

CONTRIBUTIONS VTB and BM were involved in the conceptualization of this project. VTB, BM, ILF and LR were involved in the methodology, software, validation, formal
analysis, investigation, resources, data curation, writing, preparation, visualization. VTB, BM, ILF, LR, AZ, DW and MOM were involved in the review, administration,
supervision. NS and EDE implemented the 3D ray-tracing.

Comparison of a non-HORUS sunlit and a HORUS shadowed Image in a TSR. 
Non-HORUS image credit: LROC/ASU/GSFC


