

Swiss Plasma Center

Detection of plasma confinement states in the TCV tokamak

NeurIPS 2020

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland; ² Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany; ³ Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands; ^a See author list of "S. Coda et al 2019 Nucl. Fusion 59 112023"; ^b See author list of "B. Labit et al 2019 Nucl. Fusion 59 086020" First author e-mail: gino.marceca@epfl.ch

Machine Learnng and the Physical Sciences workshop

Introduction

Real time signals measured by TCV diagnostics

- The validation and construction of the database is done using the *DIS_tool* interface which allows domain experts to easily label each time step of a discharge as being in L, D or H mode.
- Labelling is a time consuming process which requires many iterations and consensus across different experts, where disagreement (in particular for the D modes) is typical.
- Accurate ML models can automatize this process and help in the production of large and consistent DBs across different existing Tokamaks.

Swiss Plasma Center

G. Marceca¹, F. Matos², A. Pau¹, F. Felici¹, V. Menkovski³, the TCV Team^a and the EUROfusion MST1 Team^b

EUROfusion

Settings PDch

[A. Pau FED 2017]

RUN DEL ADD DIS

WRITING IN

Encoder-Decoder neural networks to detect plasma confinement states

Evaluation metric: Cohen's Kappa-statistic (κ) measures κ scoresLDHthe agreement between two sets of categorical data $CNN-LSTM$ (dataset [1])Train0.960.890.97(ground truth vs model predictions). $CNN-LSTM$ $Train$ 0.980.910.98Train0.920.780.91		_					
CNN-LSTM (dataset [1])Train0.960.890.97The agreement between two sets of categorical data(ground truth vs model predictions). $CNN-LSTM$ Train0.980.910.98 $CNN-LSTM$ Train0.920.780.91Train0.990.990.99	Evaluation metric: Cohen's Kanna-statistic (κ) measures	κ scores		L	D	Н	Mean
the agreement between two sets of categorical dataTest 0.82 0.77 0.85 (ground truth vs model predictions).Train 0.98 0.91 0.98 Train 0.92 0.78 0.91 Train 0.92 0.78 0.91	the agreement between two sets of categorical data	CNN-LSTM (dataset [1])	Train	0.96	0.89	0.97	0.96
(ground truth vs model predictions). $\frac{\text{CNN-LSTM}}{\text{Test}} = \frac{0.96}{0.92} = \frac{0.91}{0.78} = \frac{0.96}{0.91}$			Train	0.82	0.77	0.85	$\frac{0.83}{0.98}$
$\frac{1}{1}$	(ground truth vs model predictions).	CNN-LSTM	Test	0.98	0.78	0.90	0.90
3 India 0.99 0.99	$\kappa = \frac{p_0 - p_e}{1 - p_e}, \qquad p_e = \frac{1}{N^2} \sum_{k=1}^3 n_{k1} n_{k2} = \text{prob of random agreement}$	seq2seq UTime	Train	0.99	0.99	0.99	0.99
$p_0 - p_e$ 1 \sum seq2seq 5-CV 0.97 ± 0.01 0.89 ± 0.03 0.98 ± 0.01 0.9			5-CV	0.97 ± 0.01	0.89 ± 0.03	0.98 ± 0.01	0.97 ± 0.01
$\kappa = \frac{10}{1-n}$, $p_e = \frac{10}{N^2} \sum_{k=1}^{N} n_{k1} n_{k2}$ = prob of random agreement			Test	0.94	0.86	0.96	0.94
$I = p_e \qquad IN = \sum_{k=1}^{N} V_{k=1} \qquad \text{UTime} \qquad 0.99 \qquad 0.98 \qquad 0.99 \qquad 0$			5-CV	$0.99 \\ 0.97 \pm 0.01$	$\begin{array}{c} 0.98\\ 0.88\pm0.04\end{array}$	$0.99 \\ 0.97 \pm 0.01$	$0.99 \\ 0.97 \pm 0.01$
$n_{i} = accuracy$ $n_{i+i} = \#$ times set <i>i</i> predicted category <i>k</i>	$n_{i} = accuracy$ $n_{i} = $ #times set <i>i</i> predicted category <i>k</i>		Test	0.94	0.89	0.96	0.95

Conclusions and next steps

- Two models based on an encoder-decoder architecture were developed to detect plasma confinement states in TCV.
- The existing TCV database of plasma states was highly extended and refined based on a consensus of expert knowledge.
- Thanks to both, the new database and the models, results surpassed by ~10% previous ones based on an CNN-LSTM model.
- As next steps we will rely on TL to deliver extensive and consistent databases for other machines. We will also implement the seq2seq model in the real-time control system and predict the confinement degradation as a disruption precursor.

