Introduction

Underground analysis of fractured media requires flow simulations (e.g. applications geothermal applications, oil & gas production). Discrete Fracture Networks (DFN) are discrete models composed by a network of 2D polygonal fractures in a 3D domain, that can accurately simulate the flow of a fracture medium.

The reformulation by [Berrone, Pieraccini, Scialo' 2013, 2014, 2016] guarantees advantages but numerical solutions of DFN are still prohibitive for the large number of simulations required by Uncertainty Quantification (UQ) analyses.

Figure 1: surface of a natural fractured medium (left) and a DFN (right)

NN for Flux Regression in DFN

Use a Neural Network (NN) for regression of exiting fluxes $\boldsymbol{\varphi} \in \mathbb{R}^m$ from DFN158

• Neural Network Fully connected multi-headed, tree-shaped architecture, trunk and branches depth 3, 158 units \times layer, softplus activation, Adam optimizer, early stopping with patience 150.

	\mathcal{F}_8	\mathcal{F}_{12}	\mathcal{F}_{14}	\mathcal{F}_{78}	\mathcal{F}_{90}	\mathcal{F}_{98}
$D_{\mathrm{KL}}/\mathcal{E}$	0.0009	0.0003	0.0010	0.0002	0.0033	0.0379

Table 1: Dissimilarity between ϕ , ϕ , actual and predicted outflux distributions; D_{KL} : KL divergence between $\phi, \phi; \mathcal{E}$: entropy of ϕ

Discrete Fracture Network insights by eXplainable AI POLITECNIC **DI TORINO** NIPS 2020 Workshop Machine Learning and the Physical Sciences - 11st December 2020 Berrone S.¹, Della Santa F.¹, Mastropietro A.^{1,2}, Pieraccini S.¹, Vaccarino F.^{1,3}. ¹Politecnico di Torino, ²Addfor S.p.A., Torino, ³ISI Foundation, Torino Main Target: Backbone Identification Major Issues Fracture media cannot be fully described, then: Backbone B: sub-network of fractures with transport char-• Generation: lacks of full deterministic data acteristics approximating the original DFN \Rightarrow DFNs stochastically generated. • **DFN158**: Fix the DFN geometry with n = 158 fractures ran-Quantify the uncertainty of stochastic generation domly generated from geological distributions (7 outflow fractures). \implies Uncertainty Quantification (UQ) Assume varying fracture trasmissivities $\log_{10} \kappa_i \sim \mathcal{N}(-5, 1/3)$. • Flow Simulation: fixed boundary Dirichlet conditions of fixed pressure ΔH between influx and outflux fractures. • Simulation: complex computational domain & expensive computations • Backbone validation: run flow simulations of fractures subnetwork and compare ϕ , ϕ_B . **Reduce the DFN complexity** ϕ , ϕ_B exiting flux distributions of full DFN and Backbone: \implies Backbone Identification $\implies \phi \approx \phi_B$ LRP for Backbone Identification Results • Local algorithm of eXplainable AI Layer-wise Relevance Propagation (LRP) [Bach, 2015]: $R_i^{(\ell)} = \sum_{j \in (\ell+1)} R_{i \leftarrow j}^{(\ell, \ell+1)}, \quad \text{neuron } i \in \ell \text{ layer.}$ • Here extend to **global explanation**: Expected Relevance as a **feature selection** algorithm: **Figure 2:** Fractures ordered by ascending value of r (top-left corner: lowest 60%; (blue) labelled outflow fractures; (green) inflow fractures. Outflow fractures are in the top-25% of expected relevance Layers \Rightarrow NN approximates fluxes coherently with the DFN topology. $\mathbb{E}_{\kappa}[R(\kappa)]$: $\mathbb{E}[R_{N}]$ • Overall pipeline for **Backbone Identification**: utflux fractures **DFN Simulation Mo** \mathcal{F}_{107} 0.0010 Backbone Dataset Identification **Figure 3:** Graphs of DFN158 (top-left) and Backbones with top expected relevance: 75% (top-right), 50% (bottom-left), 25% (bottom-right). NN seems understanding that some bottleneck nodes are funda-

relevance.

Neural Network

mental: a source-sink path is kept for the backbone top 25% expected