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Introduction
Underground analysis of fractured media requires flow simulations (e.g.
applications geothermal applications, oil & gas production).
Discrete Fracture Networks (DFN) are discrete models composed by
a network of 2D polygonal fractures in a 3D domain, that can accu-
rately simulate the flow of a fracture medium.
The reformulation by [Berrone, Pieraccini, Scialo’ 2013, 2014, 2016]
guarantees advantages but numerical solutions of DFN are still pro-
hibitive for the large number of simulations required by Uncertainty
Quantification (UQ) analyses.

Figure 1: surface of a natural fractured medium (left) and a DFN (right)

Major Issues
Fracture media cannot be fully described, then:

• Generation: lacks of full deterministic data
⇒ DFNs stochastically generated.

Quantify the uncertainty of stochastic generation

=⇒ Uncertainty Quantification (UQ)

• Simulation: complex computational domain & expensive
computations

Reduce the DFN complexity

=⇒ Backbone Identification

Main Target: Backbone Identification

Backbone B: sub-network of fractures with transport char-
acteristics approximating the original DFN

• DFN158: Fix the DFN geometry with n = 158 fractures ran-
domly generated from geological distributions (7 outflow frac-
tures).
Assume varying fracture trasmissivities log10 κi ∼ N (−5, 1/3).

• Flow Simulation: fixed boundary Dirichlet conditions of fixed
pressure ∆H between influx and outflux fractures.

• Backbone validation: run flow simulations of fractures sub-
network and compare φ, φB .

φ, φB exiting flux distributions of full DFN and Backbone:

=⇒ φ ≈ φB

NN for Flux Regression in DFN

Use aNeural Network (NN) for regression of exiting fluxes
ϕ ∈ Rm from DFN158

(5.)1

d
Layers

(5.)2

d
Layers

(0)

• Neural Network Fully connected multi-headed, tree-shaped ar-
chitecture, trunk and branches depth 3, 158 units × layer, soft-
plus activation, Adam optimizer, early stopping with patience
150.

F8 F12 F14 F78 F90 F98 F107

DKL/E 0.0009 0.0003 0.0010 0.0002 0.0033 0.0379 0.0010

Table 1: Dissimilarity between φ, φ̂, actual and predicted outflux distribu-
tions; DKL: KL divergence between φ, φ̂; E : entropy of φ

LRP for Backbone Identification
• Local algorithm of eXplainable AI

Layer-wise Relevance Propagation (LRP) [Bach, 2015]:
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• Here extend to global explanation:
Expected Relevance as a feature selection algorithm:

• Overall pipeline for Backbone Identification:

Results

Figure 2: Fractures ordered by ascending value of r (top-left corner: lowest
60%); (blue) labelled outflow fractures; (green) inflow fractures.
Outflow fractures are in the top-25% of expected relevance
⇒ NN approximates fluxes coherently with the DFN topology.

Figure 3: Graphs of DFN158 (top-left) and Backbones with top expected
relevance: 75% (top-right), 50% (bottom-left), 25% (bottom-right).
NN seems understanding that some bottleneck nodes are funda-
mental: a source-sink path is kept for the backbone top 25% expected
relevance.


