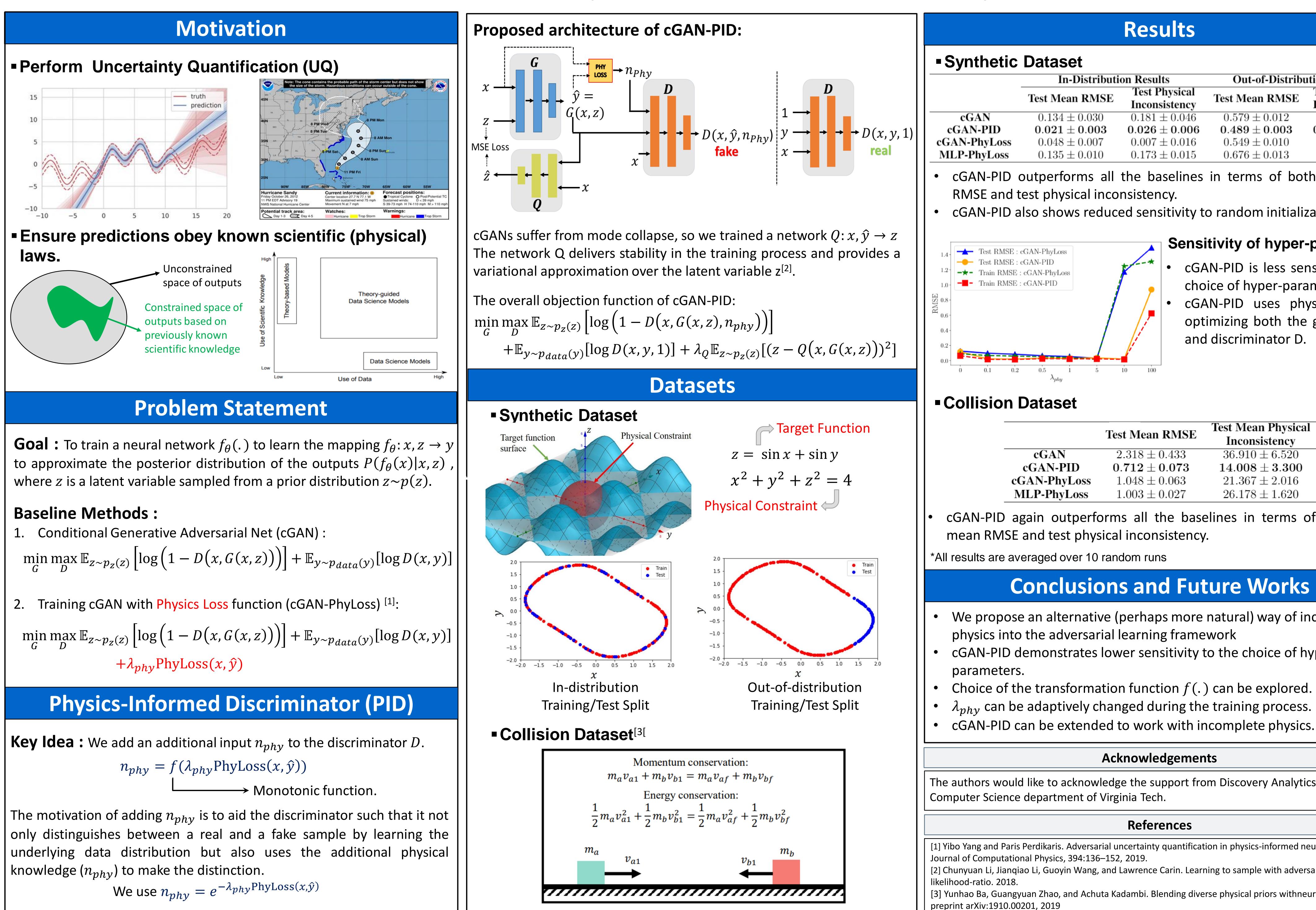


Arka Daw¹, M. Maruf¹, and Anuj Karpatne¹ ¹Department of Computer Science, Virginia Polytechnic and State University, Blacksburg, VA



Physics-Informed Discriminator (PID) for Conditional Generative Adversarial Nets

Results

ibution Results		Out-of-Distribution Results	
1SE	Test Physical Inconsistency	Test Mean RMSE	Test Physical Inconsistency
30	0.181 ± 0.046	0.579 ± 0.012	0.520 ± 0.027
03	0.026 ± 0.006	0.489 ± 0.003	0.428 ± 0.040
)7	0.007 ± 0.016	0.549 ± 0.010	0.481 ± 0.015
10	0.173 ± 0.015	0.676 ± 0.013	0.596 ± 0.032

cGAN-PID outperforms all the baselines in terms of both test mean

cGAN-PID also shows reduced sensitivity to random initializations.

Sensitivity of hyper-parameter

- cGAN-PID is less sensitive to the choice of hyper-parameters.
- cGAN-PID uses physics loss in optimizing both the generator G and discriminator D.

Test Mean RMSE	Test Mean Physical Inconsistency	
2.318 ± 0.433	36.910 ± 6.520	
0.712 ± 0.073	14.008 ± 3.300	
1.048 ± 0.063	21.367 ± 2.016	
1.003 ± 0.027	26.178 ± 1.620	

cGAN-PID again outperforms all the baselines in terms of both test

Conclusions and Future Works

We propose an alternative (perhaps more natural) way of incorporating

cGAN-PID demonstrates lower sensitivity to the choice of hyper-

Acknowledgements

The authors would like to acknowledge the support from Discovery Analytics Center of the

References

[1] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural networks.

[2] Chunyuan Li, Jianqiao Li, Guoyin Wang, and Lawrence Carin. Learning to sample with adversarially learned

[3] Yunhao Ba, Guangyuan Zhao, and Achuta Kadambi. Blending diverse physical priors withneural networks.arXiv