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Abstract

Supernovae mark the explosive deaths of stars and enrich the cosmos with heavy
elements. Future telescopes will discover thousands of new supernovae nightly,
creating a need to flag astrophysically interesting events rapidly for followup
study. Ideally, such an anomaly detection pipeline would be independent of our
current knowledge and be sensitive to unexpected phenomena. Here we present
an unsupervised method to search for anomalous time series in real time for
transient, multivariate, and aperiodic signals. We use a RNN-based variational
autoencoder to encode supernova time series and an isolation forest to search
for anomalous events in the learned encoded space. We apply this method to
a simulated dataset of 12,159 supernovae, successfully discovering anomalous
supernovae and objects with catastrophically incorrect redshift measurements. This
work is the first anomaly detection pipeline for supernovae which works with real
time, online datastreams.

1 Introduction

Supernovae (SNe) are the explosive deaths of stars which radiate across the electromagnetic spectrum.
Astronomers study these events through photometry (broadband imaging) and spectroscopy. SN light
is affected by the underlying driving physics and the star’s environment; the taxonomy of SNe is
based on these factors. Traditionally, SNe are classified through spectroscopy, which is prohibitively
expensive for most SNe. However, SNe are discovered through wide-field photometric surveys,
which capture images of the sky in multiple broadband filters to generate light curves of SNe (see Fig.
1). Data-driven methods which flag astrophysically interesting SNe for expensive, multiwavelength
follow up are essential as a new observatory, the Vera Rubin Observatory (VRO), comes online in
2022. VRO will discover millions of SNe annually, increasing our current discovery rate by 100x.

Given our limited knowledge of the cosmos, we must prepare for this deluge of data by developing
physics agnostic algorithms which search for unknown phenomena. In this work, we present an
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anomaly detection pipeline based on a recurrent autoencoder with no physical priors. We search the
learned encoded space for out-of-distribution events and evaluate the success of our algorithm by
determining if the anomalous events are indeed of rare physical origin.

In the astrophysics literature, anomaly detection for SN light curves has been explored on archival
datasets [1, 2] using isolation forests and active anomaly discovery. Convolutional neural nets have
been used as a dimensionality reduction technique for gravitational wave time series [3]. Autoencoders
have been used to characterize the variability of quasars [4] and denoising gravitational wave time
series [5]. In the broader machine learning literature, several studies have focused on searching for
anomalous sections of long time series by extracted features from subsections of the series (e.g.,
[6, 7]). There has been limited focus on anomaly detection in short, aperiodic, multi-band time series.

2 Data and Method

PLAsTiCC is a simulation of 3 years of VRO observational data including over 3.5 million transient
(including SNe) events from eighteen unique physical classes, extending to redshift z ≈ 1.5 (a
measurement of distance). Each event is a light curve made up of observations across six broadband
filters (ugrizY ), as well as metadata about the physics used to generate the light curve. While the
PLAsTiCC data was originally used for a Kaggle competition to classify SNe, we re-purpose this
dataset as a training set for anomaly detection. Here, anomalous events will be determined by the
metadata (i.e., if the event comes from a rare astrophysical origin). In total, our data set contains
12,159 SNe (and SN-like) light curves from twelve extragalactic classes (a random subset of the full
PLAsTiCC dataset). A sample light curve is shown in Fig. 1. We note that in reality, SN light curves
will be contaminated by other galactic astrophysical sources, but it is straight forward to separate
extragalactic events from galactic events given a photometric redshift estimate (or more sophisticated
methods, e.g., [8]).

The PLAsTiCC SNe are generated at random distances from Earth following a prescribed volumetric
rate. We pre-process the data by correcting the flux using the provided photometric redshift (“photo-
z"), including cosmological k-corrections. Note that the redshift estimates include realistic error
estimates, including catastrophically incorrect estimates; we take these redshift estimates to be correct
and discuss how this impact our ability to discover anomalous events in Section 3. We additionally
correct the light curves for galactic reddening from dust and cosmological time dilation. The light
curves are irregularly sampled in each filter. We use a 2D Gaussian Process to interpolate the data
across time to have a flux estimate in each filter at each observed time, with a Gaussian kernel
described by:

κ(titjfifj ;σ, ltlf ) = σ2 exp
[
− (ti − tj)
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2l2t

]
× exp

[
− d(fi, fj)

2

2l2f

]
(1)

where f is an integer between 0 and 5 that represents the ugrizY filters, and the parameters lt and
lf are characteristic correlation length scales in time and filter, respectively. d(fi, fj) is a distance
metric between filters. We define it as the Wasserstein-1 distance between each filter’s normalized
filter, where each filter is treated as a density function in wavelength. Thus, this distance metric
is reduced by any overlap in filters, but still simplifies to difference between center wavelengths
in the limit of infinitely narrow passbands. The GP fitting process accounts for the measured data
uncertainties, making the light curves more robust to low-confidence outliers. We note that we also
repeated our experiment using a kernel defined by filter index and found similar results.

Astrophysical preprocessing is described in greater detail in [9]. Importantly, the SN light curves are
temporally shifted such that the observed time of peak brightness (in any filter) is considered null
time. This means that as new data is taken to form a light curve, the null time is actively updated
until the true peak of the SN is reached.

After pre-processing using GPs, our proposed anomaly detection pipeline has two steps: first, we
train a recurrent variational autoencoder on the full dataset. Second, we search the learned encoded
space for anomalous events using an isolation forest. The variational autoencoder uses recurrent
neurons to read in the light curve and estimated GP errors and encodes this light curve as a vector.
Before being passed into the decoder, the encoded layer is repeated N times, each time appended
with a phase (defined as time since maximum light) ti. The decoder then produces the light curves at
the specified N times. This architecture is specifically chosen so that the neural network learns the

2



...

...

...

...

...... ...

Measured / Estimated 
ugrizy
Errors and Time

Brightness

Encoded 
Layer

Repeated Encoded
Layer with 

Concatenated Time

Output 
Light Curve

...

0 10 20 30 40 50 60
Time Relative to Maximum Luminosity

20

19

18

17

16

B
ri

g
h
tn

e
ss

Gaussian Process-
Interpolated
Time Series

through Isolation Forest 
Anomaly Search

Figure 1: Anomaly detection pipeline, including the recurrent neuron-based variational autoencoder
architecture. Top panel: The light curve (flux versus time as function of filter color) of a SN. The light
curve has been interpolated using a 2D Gaussian process. Middle panel: The recurrent autoencoder
architecture. Light curves are represented as a time series, in which each epoch is represented by
11 features: 6 flux values, 6 estimated error values, and one time. This time series (consisting
of N points) is encoded. The encoding layer is repeated N times, each time appended with the
associated time value. In principle, this layer allows a user to interpolate and extrapolate light curves
by appending time values not in the initial time series; however, this feature is not explicitly utilized
in this work. Finally, the decoder returns a time series of flux values to be compared to the original
time series for training. Bottom panel: An example subspace of the encoding space, highlighting
anomalous events (as classified by the isolation forest) in purple.
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Figure 2: Evolution of an anomalous event detected by our algorithm. Physically, this event is drawn
from a rare class of SNe known as Superluminous Supernovae (SLSNe), which would be of scientific
interest. For reference, SLSNe make up 2% of our training set. Left Panel: GP-interpolated light
curve of the example anomalous event, as a function of time relative to maximum luminosity. Middle
Panel: Encoded features as a function of time relative to the peak luminosity of the SLSN. About one
month before maximum luminosity, the isolation forest correctly identifies the event as anomalous
(shown as a switch from grey to purple). Note that the features have been normalized such that their
average is equal to zero during the final epoch for visual purposes. Right Panel: Evolution of the
anomalous SLSN in a subset of encoded space. Black points represent the full sample of events. The
encoded values for the anomalous SLSN are shown as squares becoming increasingly purple with
time. The SLSN begins in the main distribution of all events (shown in black) and evolves into an
anomalous region of feature space.

physical meaning of phase relative to maximum light for a SN. Additionally, the unique repeat layer
of our architecture allows us to call for a times not included in the real data, allowing for interpolation
and extrapolation of a light curve if desired (although this feature is not used in this work). Figure 1
illustrates our full pipeline, including a schematic of the neural network architecture used.

We then search this encoded space for anomalies using an isolation forest (IF), which has had success
in previous studies within the field [2]. The IF algorithm uses a series of decision trees over random
attributes to isolate all events in a sample. Because anomalous events are in some way distinct from
the main distribution, the forest requires fewer trees to isolate an anomaly. In this way, each event
has an associated anomaly score associated with the path length of the IF. We rank all events by this
anomaly score and examine the top ∼ 0.5% (≈ 60) events.

3 Results and Discussion

We construct an autoencoder architecture with three recurrent layers of 100 neurons each as the
encoder and similarly three recurrent layers as the decoder in Keras [10] with a TensorFlow backend
[11]. We use gated recurrent unit (GRU) neurons with hyperbolic tangent activation functions for
most layers, and linear activation functions for the layer immediately before the encoded layer. We
train the autoencoder by optimizing a standard loss function which minimizes the weighted mean
squared error of the model and Kullback–Leibler (KL) divergence using the Adam optimizer with
standard learning rates. We train for 35 iterations. After training is complete, we next train an
isolation forest on the encoded light curves using 100 base estimators.

We rank the final encoded light curves by anomaly score. In reality, astronomers will use a combi-
nation of score, brightness, and on-sky location to choose events to study in detail. Here, we focus
on the top ≈ 0.5% of events (61 events in total), but our results are robust to this exact cutoff. We
find that all of these objects are bright, with an average peak magnitude of −22 (compared to the
sample average peak magnitude of Mpeak ≈ −19); however, the algorithm is not simply selecting
the brightest objects in the sample, as many of the brightest objects are not included. Over half of the
anomalous events (40 of the 61) are Active Galactic Nuclei (accreting supermassive black holes),
which are a rare phenomena (making up ≈ 6% of the training set) known to have widely varying light
curves which are difficult to model and predict. About 20% (14 events) of the anomalous events are
from a rare, bright class of transients known as Superluminous Supernovae (a type of core collapse
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supernovae from newly born neutron stars). These are correctly considered anomalous events, as
they make up just ≈ 2% of the training sample and are currently poorly understood astrophysically.
Interestingly, the average anomaly score for SLSNe is ≈ 2σ higher than the average score of the
sample. The remaining objects (about 20%) are “typical" SNe (Type Ia and Type II) which have
catastrophically incorrect distance estimates, making the events seem artificially luminous.

While our algorithm correctly identifies rare transients, it is important that it can do so before the
transient reach maximum luminosity in order to facilitate multiwavelength follow up. Obtaining
spectroscopic and multiwavelength follow-up around maximum light is often necessary to observe
early, transient physics within SNe. In Figure 2 we look at one particular example of a SLSN. Our
anomaly detection algorithm correctly predicts that this event is anomalous about one month before
reaching maximum light. We find that, more generally, our algorithm identifies events as anomalous
around maximum light.

We explore anomaly scores of the full set of light curves, shown in Fig. 3. We find that the majority
of light curves have anomaly scores which sharply decrease after maximum light. In contrast, the
majority of anomalous events will monotonically increase in anomaly score. Furthermore, the
majority of events which reach the anomaly threshold at any point in time will remain anomalous
until the end of their evolution (≈70-80%). The events which cross the anomaly threshold but later
drop to a non-anomalous score are typically very close to our threshold value.

Here, we have presented the first anomaly detection pipeline for SNe which works with online data
streams. We demonstrated its ability to identify physically interesting and rare SNe during a time
window which is scientifically interesting. In future work, we hope to extend this anomaly detection
algorithm to data which have not been corrected for redshift in an effort to search for intrinsically
dim, anomalous events, as well as include other SN features (e.g., host galaxy information) when
evaluating anomalies. Furthermore, we will explore how anomaly score varies as a function of
physical class and if this type of network can be used to help classify SNe in real time.

Broader Impact

Within the astronomy community, this work will be helpful as a publicly available anomaly detection
pipeline to be used when VRO begins observations. We hope this pipeline will promote open science,
as we make anomaly scores and the most anomalous events publicly available in real time.

In a broader context, we present an anomaly detection algorithm for multivariate, sparse data in the
observed time series is driven from some underlying function correlated across channels. Such a
model could be used on similar data sets (such as health- and bio-informatics, climate data, etc.).
Because this method is designed to be agnostic to the underlying drivers of the data, this method
is not robust to outliers in protected attributes and could therefore be used to inappropriately label
anomalies in e.g., social contexts.
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