# The Error Analysis of Numerical Integrators for **Deep Neural Network Modeling of Differential Equations**



## Contribution:

- Defined the modeling error as the "learnability coefficient"
- Formulated the way of learnability analysis
- Proposed the new viewpoint of designing numerical methods other than the consistency, stability, and convergence

## How to use the result:

- 1. Roughly estimate the damping/oscillation behavior of the target dynamics (e.g. by spectrogram)
- 2. Select a discretization method that has good "learnability" for the behavior
- 3. Or, design a new method that is good in terms of "learnability"

Learnability analysis enables us to do step 2 and 3

## Theory

## Setup 1: The model equation

Target dynamics f is too general -> Introduce the linear "model equation" as a benchmark problem

model equation\* :  $\frac{dx}{dt} = \lambda x \ (\lambda \in \mathbb{C})$ 

\*commonly used in stability analysis of numerical methods

 $\lambda x$  represents linearized and diagonalized f  $\operatorname{Re}(\lambda)$  : damping,  $\operatorname{Im}(\lambda)$  : oscillation

The idea of "learnability analysis"

learnable region { $\lambda$  : learnability( $\lambda$ ) < threshold }



# Setup 2: Definition of the learnability coefficient

To know the error that remains even if the learning is successful, suppose that the learned model  $f_{NN}$  is linear :  $f_{NN}(x) = \alpha x$  ( $\alpha \in \mathbb{C}$ )

Define the relative error as "learnability coefficient"

# Main result : equation of learned model

### Theorem

If we learned the model eq.  $\frac{dx}{dt} = \lambda x$  with the Runge-Kutta methods, There exists a linear model  $f_{NN}(x) = \alpha x$  that the numerical solution of  $f_{NN}$ matches the sampled exact solution  $x(nh) = x_0 e^{n\lambda h}$ . The  $\alpha$  satisfies :  $b^{\mathrm{T}}(I - \alpha hA)^{-1}\mathbf{1}\alpha h - \mathrm{e}^{\lambda h} + 1 = 0,$  (5)

where  $\boldsymbol{b}$  and A are constant vector and matrix that specify p-stage Runge-Kutta methods.

 $\rightarrow \alpha$  and the learnability can be calculated

Shunpei Terakawa, Takaharu Yaguchi,

Graduate School of System and Information Science, Kobe University **Takashi Matsubara**, Graduate School of Engineering Science, Osaka University Graduate School of System and Information Science, Kobe University

"A is better than B for learning damping dynamics" "B is better than A for learning vibrating dynamics"

to say like these,

what's "learnability"?

for each discretization method and for each  $\lambda$ 



# Visualization of learnability

### Learnability regions for some Runge-Kutta methods

e.g. If 10% error is allowed, dynamics  $z = \lambda h$  inside the line "0.100" is learnable.



 $\left\|\frac{\alpha-\lambda}{\lambda}\right| \text{ is a function of } z = \lambda h$  $\blacksquare h$  is usually fixed, so the modeling error can be controlled by the choice of discretization method

The result of learning  $\lambda = 1.5i$ with the classical  $4^{th}$  order Runge-Kutta (h = 1.0).



## Learning is successful: (3)=(4)

" $_{\circ}$ ", the numerical solution of  $f_{NN}$  with the method, is on the exact solution "--"

### But the learned dynamics differs from the target: $(1 \neq 2)$

- : the target dynamics

### The difference is predicted: (2)=(5)

- : the learned dynamics  $f_{NN}$
- : the theoretical prediction

Example

## Experiment

- : the accurately integrated solution of  $f_{NN}$