
To predict a trajectory from a context set:

1. Encode each context point
2. Aggregate the encoded representations
3. Parametrise the distribution of z
4. Integrate the latent ODE to get l(t) at all times
5. Decode the latent state to get the prediction

Neural ODE Processes
NDPs

Motivation and Contributions
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Our main contributions are:
● Introduce NDPs, a stochastic process for dynamical systems. 
● Show NDPs can adapt to new data points and capture uncertainty.  
● Demonstrate its applicability to low-dimensional dynamical systems. 
● Show they scale up to high-dimensional time-series with latent dynamics.

Alexander Norcliffe*, Cristian Bodnar*, Ben Day*, 
Jacob Moss*, Pietro Liò
alex.norcliffe98@gmail.com,
[cb2015, bjd39, jm2311, pl219]@cam.ac.uk

Rotating MNIST Digits

Neural ODEs (NODEs) [1] use a neural network to model the instantaneous rate of 
change of the state of a system. Despite their suitability for modelling dynamics 
governed time-series they have some drawbacks:
● They are unable to adapt at test time to incoming data points
● They do not capture uncertainty over the dynamics that model a system
To overcome these issues we introduce Neural ODE Processes (NDPs). NDPs are 
a new class of stochastic processes determined over a distribution of ODEs, which 
extends Neural Processes (NPs) [2] to use Neural ODEs.

Above: Schematic diagram of Neural ODE Processes.
Left: Observations from a time series, the context set, are encoded and aggregated to form a 
representation of the time-series. This parametrises the global latent variable z.
Middle: Samples of z are drawn, which initialise and condition a latent ODE, with each sample 
producing a coherent trajectory.
Right: Predictions at target times are made by decoding the latent ODE.

Predator Prey Dynamics
We considered modelling the Lotka-Volterra equations, for a predator-prey 
system. The population of the prey u, and predator v, change according to 
the ODEs:

Intuitively the prey population goes up, unless the predator population is 
high and the predator population will go down unless the prey population is 
high. We use the values (α, β, γ, δ) = (2/3, 4/3, 1, 1).  

We consider the conserved quantity V to see how well the models learn the 
LV solution:

Visualising NPs and NDPs learning the Lotka Volterra equations. We see that NDPs 
can learn trajectories that are closer to the ground truth, both in phase space and in 
conserving the quantity V. 

Left: Graphical model of NDPs. Dark nodes represent random variables, 
light nodes represent hidden variables.

We trained the models on various 1D systems: sine curves, exponentials, 
straight lines, harmonic oscillators. Below we show how they perform on 
sine curves as they are given more data points.

We compare the performance of NDPs and NPs on the rotating MNIST task. We see that 
NDPs are able to interpolate well with only a small number of context frames. Both model 
struggle to extrapolate. 
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Adapting to New Data Points

To test our model on high dimensional data, we look at the Rotating MNIST 
digits dataset [3], which consists of MNIST 3s being rotated over 16 frames.

We give NDPs a small number of whole frames as the context, and then let 
it predict the intermediate frames and extrapolate.

The models trained on sine curves adapting to new data. We see that NDPs are able to adapt 
to the new data better than NPs.


