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Motivation
• Sampling equilibrium states of many-body systems is one of
the grand challenges of statistical physics. Equilibrium
densities of such systems with energy U(x) often follow the
Boltzmann distribution

µX(x) ∝ exp(−U(x)/τ )
where τ = kBT, with the temperature T and the Boltzmann
constant kB.

• Normalizing flows can be used to sample such densities directly
without having to run long, correlated simulation chains [1].

• Normalizing flows transform an easy to sample prior
distribution pZ(z), e.g. a multivariate normal distribution, via a
transformation x = f(z) to the output distribution pX(x) [2,3]. If
f(z) is invertible, pX(x) can be computed by the change of
variable formula

pX(x) = pZ(z) |det Jf(z)|−1 , (1)
where |det Jf(z)|−1 is the inverse of the Jacobian.

• Advanced sampling methods, such as parallel tempering,
require samplers at different temperatures. This is only
possible with multiple instances of flows so far.

Goal
Derive flow fτ , parametrized with the temperature τ , that
correctly transforms the parametrized prior distribution pτZ(z) to
the target Boltzmann distribution µτ(x) at temperature τ .

Temperature scaling condition
A change to temperature τ ′ of the Boltzmann distribution corresponds
to raising it by the power of κ = τ/τ ′

pτ ′X(x) ∝ [pτX(x)]
κ .

Using Eq. (1) we observe that the temperature scaling is exact, if for
any two temperatures τ, τ ′

pτ ′Z (z)
∣∣det Jfτ ′(z)

∣∣−1 ∝
[
pτZ(z) |det Jfτ(z)|

−1
]κ

. (2)
The temperature scaling condition is fulfilled by
1. selecting a Gaussian prior pτZ(z) = N (z|⃗0, τ )
2. building a flow with |det Jfτ(z)|

κ ∝
∣∣det Jfτ ′(z)

∣∣
One possible choice are (modified) Augmented Normalizing Flows [4].

Training
• negative log likelihood (nll), requires samples from the target

LML = nll = KL (µX(x)||pX(x)) = Ex∼µX(x) [− log pX(x)] (3)
• energy based training, requires energy of the target

LKL = KL (pX(x)||µX(x)) = Ez∼pZ(z) [U(D(z))− log |det JD(z)|]
Combine both for training L = (1 − λ)LML + λLKL

Sampling with Temperature-steerable flows
Sampling from the model at temperature τ

1. Sample z⃗ ∼ pτZ(⃗z) = N (0, τ )
2. Sample auxiliary momenta

q⃗ ∼ pτA(⃗q) = N (0, τ ), and define the point
in phase space υ⃗ = (⃗z, q⃗)

3. Propagate υ⃗ by the volume preserving
dynamics shown on the right

4. Project onto the configuration variables x⃗
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Monte Carlo sampling
1. Start with sample x⃗ and and sample corresponding momentum p⃗ ∼ pτA(⃗p) to get γ⃗ = (⃗x, p⃗)
2. Propagate γ⃗ by the inverse dynamics shown above to obtain the point in phase space υ⃗

3. Add a random displacement υ⃗′ = υ⃗ + ξ⃗ with ξ⃗ ∼ N (0, σ2)

4. Transform back to configuration space with the dynamics
5. Accept/reject the new sample x⃗′ based on the Metropolis Hastings criterion

Experiments: Alanine dipeptide

System: Alanine dipeptide in implicit solvent model
Setting: Comparison between our proposed TSF and
Molecular Dynamics (MD) simulation.
Training: The TSF is trained with samples at T = 600 K

Evaluation: We use the TSF to generate samples at T = 600 K and T = 300 K and compare the
Ramachandran plots and distributions of the ϕ angle.

We observe good agreement
at the training temperature.
At T = 300 K the TSF still
finds the major minima at
around ϕ ≈ −2, but under-
samples the minimum at
ϕ ≈ 1.
We are able to recover
the correct distribution of
ϕ when using the TSF as
Monte Carlo sampler com-
bined with parallel temper-
ing (TSF-PT).

The samples generated by the TSF closely match the en-
ergy distribution compared to MD at the training temper-
ature (T = 600 K). Even at T = 300 K it is able to closely
recover the distribution.

Experiments: Mixture of
multi-dimensional double wells

System: Mixture of multi-dimensional double wells which are mixed
via a correlation matrix A
Energy: U(x) = Udw(Ax) with Udw(x) =

∑d
i aixi + bx2

i + cxi
4

A) Marginal density of the first 5 coordinates of the 20 dimensional
system.
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Setting: Comparison between a RNVP flow [5] and our proposed TSF.
Training: Both models are trained with samples at T = 1.
Evaluation: The nll (Eq. 3) is evaluated at 100 temperatures in the
range T = 0.1 to T = 10 for B) 5 and C) 20 dimensions. The TSF
performs significantly better for temperatures further away from the
training temperature T = 1.
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