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Abstract

Many physical systems governed by the same physical laws can be expressed
by a well-established Hamiltonian with adapting different physical parameters.
However, in general, establishing an appropriate Hamiltonian of the unknown
process is a central challenge for a wide area of science and engineering problems.
We suggest that meta-learning algorithms can be one of the powerful data-driven
tools for identifying the shared representation of Hamiltonian of an unknown
process. In our demonstration, we show that a meta-learned model, which is
considered implicitly to learn the shared representation of Hamiltonian, predicts
the dynamics of new systems from observing a few point dynamics of the systems.

1 Introduction

A Hamiltonian system is usually governing by a mathematical expression with several physical
parameters. For examples, the Hamiltonian of an ideal pendulum is described as H = p2

2ml2 +
mgl(1− cos q), where the physical parameters, m, l and g are mass, pendulum length, and gravity
constant g, respectively. q and p, which denote the state of the system, are the angle of the pendulum
and the corresponding conjugate momentum, respectively. From observing several pendulums, the
common expression can be established as the functional of the Hamiltonian. Then, researchers can
readily recognize a new pendulum-like system by adapting new physical parameters on the expression.
Thus, identifying an appropriate Hamiltonian is very important yet extremely hard in most science
and engineering problems.

Meanwhile, developing an efficient meta-learning algorithm, which is aiming for training a model to
generalize well on new datasets with few samples, is one of the popular open problems in machine
learning community. One of the most successful meta-learning algorithms is Model-Agnostic Meta-
Learning (MAML) [2], which consists of a task-specific adaptation process and a meta-optimization
process. During the task-adaptation process, task-specific parameters are obtained by adapting the
initial model parameters to the corresponding task-specific train sets, and during the meta-optimization
process, the initial model parameters are updated by validating each task-specific adapted parameters
to a task-specific test set.

From comparing two problems, there is a similarity between meta-learning and identifying the
governing expression of Hamiltonian. Adapting a hypothesized governing expression of Hamiltonian
to many related phenomena by adapting new physical parameters to the governing equation is similar
to the task-adaptation process in meta-learning. Then, the hypothesized governing expression is
corrected by validating newly observed systems that are assumed to be governed by the same physical
laws. After many verifications on many related systems, the governing equation of Hamiltonian is
established which is a similar process to the meta-learned model with lots of iterations across various
tasks. From this point of view, we would verify whether these meta-learning algorithms are beneficial
to learning the unknown Hamiltonian by comparing it with several baselines on the Hamiltonian
system.
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2 Approach

2.1 Hamiltonian Neural Networks

In Hamiltonian mechanics, the state of a system can be described by the vector of canonical coor-
dinates, x = (q,p), which consist of position, q = (q1, q2, ..., qn) and their conjugate momenta,
p = (p1, p2, ..., pn) in phase space, where n is degrees of freedom of the system. Then, the time evo-
lution of the system is governed by Hamilton’s equations, dxdt =

(
∂H
∂p ,−

∂H
∂q

)
= Ω∇xH(x), where

H(x) : R2n → R is the Hamiltonian that is conservative during the process and Ω =

[
0 In
−In 0

]
is

a 2n× 2n skew-symmetric matrix. From the Hamiltonian equations, the Hamiltonian vector field in
phase space, which is interpreted as the time evolution of the system dx

dt , is the symplectic gradient
of the Hamiltonian Ω∇xH(x). Then, the trajectory of the state can be computed by integrating the
symplectic gradient of the Hamiltonian. In [3] and its variants[11, 1, 12, 8], the Hamiltonian function
can be approximated by neural networks, Hθ, called Hamiltonian Neural Networks (HNN). The loss
of HNN can be evaluate by the distance between the true vector field and the the symplectic gradient
of Hθ,

LHNN =

∥∥∥∥dxdt − Ω∇xHθ(x)

∥∥∥∥2
2

. (1)

2.2 Gradient-Based Meta-Learning

Among the categories of meta-learning algorithm [10, 9, 7, 4], we focus on the gradient-based
method, which is readily compatible with any differentiable model and flexibly applicable to a variety
of learning problems [2]. Especially, MAML is one of successful gradient-based meta-learning
algorithms. They assume that separately trained models for similar tasks share meta-initial parameters
θ which could be improved by several gradient steps with few samples for each task. Let each task
is given by Ti which is composed with task-specific train set and test set, Di = {Dtr

i , D
te
i }. Each

task is assumed to be from a task distribution, Ti ∼ p(T ). The learning algorithms consists of the
inner-loop and the outer-loop processes. During the inner-loop process, meta-initial parameters θ
are adapted to each task-specific train set, and during the outer-loop process, the meta-optimization
is operated by computing the batch of validation error of task-specific adapted parameters on each
task-specific test set,

θ ← θ − β∇θ
∑

Ti∼p(T )

LTi(D
te
i ; θ − α∇θLTi

(
Dtr
i ; θ

)
), (2)

where θ could be any differentiable model’s parameters that are expected to learn the shared represen-
tations of different tasks, α and β learning rate of the inner and outer loop, respectively.

Meanwhile, [6] observe that during the inner-loop process, the task-specific distinction of the model
parameters θ is mostly from the last layer of the networks, while the entire body of the model hardly
changed. Therefore, they hypothesize that the body of the model behaves shared representation across
the different tasks, while the head of the model behaves the task-specific parameters, which is called
feature reuse hypothesis. From the hypothesis, they slightly modified the MAML, freezing all but
only updating the last layer of the networks during the inner-loop process called Almost No Inner
Loop (ANIL). They showed that ANIL performs par or even over the MAML on several benchmarks,
and of course have computational benefit comparing the counterpart. For the algorithm, when the
meta-learner consists of l layers θ = (θ(1), ..., θ(l−1), θ(l)), the inner-loop update is replaced by
(θ(1), ..., θ(l−1), θ(l) − α∇θ(l)LTi (Dtr

i ; θ)).

2.3 Identifying the Shared Representation of Hamiltonian

From a meta-learning point of view, each system is regarded as a task Ti, where the physical
parameters of the system are drawn from the distribution of p(T ). The observations of the system
Ti can be split into Di = {Dtr

i , D
te
i }, where Dtr

i and Dte
i denote the task-specific train and test

sets, respectively. The observations of both Dtr
i and Dte

i are given by a set of tuples of canonical
coordinates x = (q,p) and their time derivatives dx

dt as the ground truth.
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For each system, the task-specific model parameters are obtained by computing the task-specific
loss using Equation 1 on each train set Dtr

i , and the meta-optimization can be operated on the batch
of systems by minimizing the loss over the batch of physical parameters sampled from p(T ). Each
loss is computed by evaluating each task-specific adapted model parameters to each test set Dtr

i ,
Depending on the inner-loop methods, we can consider two options of meta-learning algorithms,
such as meta-training HNN with MAML, and with ANIL.

3 Experiments

3.1 Datasets

In this paper, we focus on the pendulum system. Hamiltonian of the system is described by H =
p2

2ml2 +mgl(1− cos(q − q0)), where the physical parameters m, l, and q0 are the mass, pendulum
length, and equilibrium angle from the vertical, respectively. q and p are the pendulum angle from the
vertical and conjugate momentum of the system, respectively. g denotes the gravitational acceleration.

During the meta-training, we generate 10,000 tasks for meta-train sets. Each meta-train set consists
of task-specific train set and test set given by 50 randomly sampled point states x and their time
derivatives dx

dt in phase space with task-specific physical parameters. The states are randomly
sampled from (q, p) ∈ ([−2π, 2π], [−20, 20]). The physical parameters are randomly sampled from
(m, l, q0) ∈ ([0.5, 5], [0.5, 5], [−π, π]). We fix the gravitational acceleration as g = 1.

During the meta-testing, Dtr
new consists of randomly sampled points in phase space with K =

{25, 50}, and Dte
new consists of equally fine-spaced points in phase space. Fine-spaced test sets of

new systems consist of 50 equally spaced grids for each coordinate in the region of the phase space
where we sampled the point states. Therefore, there are 2,500 grids points in the test sets. The
distributions of sampled states and physical parameters are the same as in the meta-training stage.

3.2 Implementations

We took several learners as baselines to assess the efficacy of our proposed methods, such as (1)
training HNN on Dtr

new from scratch (random initialization), (2) pretrained HNN using standard
supervised learning on the meta-train set, (3) meta-trained naive fully connected neural networks
(Naive NN), which are given the inputs x and the outputs dx

dt with MAML, and (4) with ANIL.

We took the baseline model as fully connected neural networks with the size of state dimensions - 64
Softplus - 64 Softplus - 64 Softplus - state dimensions and the HNN model as same architecture except
the last layer with 1 dimension. During meta-training or pretraining, we use the Adam optimizer [5]
on outer-loop with learning rate of 0.001 and use gradient descent on inner-loop with learning rate
of 0.002. For all systems, we set the number of task batches of 10, inner gradient updates of 5, and
episodes of outer loop of 100 for meta-optimization. During the meta-testing, we also use the Adam
optimizer with a learning rate 0.002.

3.3 Results

In Figure 1, predicted pendulum dynamics by adapting the learners to observed partial observations
are represented as phase portraits by the corresponding gradient steps. In Figure 1 (a), the initial
outputs of the learners are represented. During the adaptation to the given observations, the output
vectors of each learner are evolved to fit to the observations based on their own prior belief or
representation learned from the meta-train set. In detail, HNN from scratch fails to predict the
dynamics of new systems from partial observations. The number of samples and gradient steps is too
small to train HNN without any prior knowledge of the systems. Pretrained HNN also fails, even
though it is trained using the meta-train sets because the standard supervised learning scheme is not
efficient for the model to learn appropriate shared representation across the systems. Naive NNs,
with MAML and ANIL also fail to predict the dynamics because naive NNs are hard to grasp the
continuous and conservative structure of the vector fields. HANIL can accurately predict the new
systems dynamics from partial observations with few gradient steps, while HAMAML is slower
than HANIL to adapt the true vector fields because of the larger number of parameters to update in
adaptation process. In Figure 2, we also evaluate the learners adapted to the new systems through their
predictions of state and energy trajectories from the initial states of the new systems. Adapted HANIL
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(a) Gradient step 0

(b) Gradient step 1

(c) Gradient step 10

Figure 1: Predicted vector fields (gray streamlines) by adapting the learners to observations of new
pendulum systems as given point dynamics (red arrows) after the corresponding gradient steps. The
x-axis and y-axis denote q and p, respectively.

(blue lines) to new systems predicts the states and energy trajectories have relatively small errors
from the ground truth (black dashed lines), whereas the others fail to predict the right trajectories and
energies of the system at each time step.

Figure 2: Predicted state and energy trajectories from the initial states, and their corresponding MSEs
starting from an initial state during 20s. The predicted values are computed by the learners adapted
to 50 randomly sampled point dynamics of new systems in phase space after 50 gradient steps.

4 Conclusions

From observing the similarity between seemingly unrelated problems, identifying the Hamiltonian
and meta-learning, we formulate the problem of identifying the Hamiltonian as a meta-learning
problem. We incorporate HNN with meta-learning algorithms to implicitly discover the shared
representation of unknown Hamiltonian across the observed pendulum systems. Comparing the
baseline models, we show that the proposed methods, especially HANIL, are efficient to learn
new systems dynamics governed by the same underlying physical laws. The results state that the
proposed methods have the ability to extract the meta-learned Hamiltonian representation, which can
be considered as physical nature across the observed systems during meta-training.
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Broader Impact

We believe that it provides a great step toward to automatically discover the physical laws from data.
However the experiment in this paper is restricted to pendulum systems, it should be expanded to
more complex systems and verified on more realistic experiments.
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