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Abstract

Molecular mechanics (MM) potentials have long been a workhorse of computa-
tional chemistry. Leveraging accuracy and speed, these functional forms find use in
a wide variety of applications from rapid virtual screening to detailed free energy
calculations. Traditionally, MM potentials have relied on human-curated, inflexible,
and poorly extensible discrete chemical perception rules (atom types) for applying
parameters to molecules or biopolymers, making them difficult to optimize to
fit quantum chemical or physical property data. Here, we propose an alternative
approach that uses graph nets to perceive chemical environments, producing con-
tinuous atom embeddings from which valence and nonbonded parameters can be
predicted using a feed-forward neural network. Since all stages are built using
smooth functions, the entire process of chemical perception and parameter assign-
ment is differentiable end-to-end with respect to model parameters, allowing new
force fields to be easily constructed, extended, and applied to arbitrary molecules.
We show that this approach has the capacity to reproduce legacy atom types and
can be fit to MM and QM energies and forces, among other targets.

1 Introduction

Molecular mechanics force fields—physical models that abstract molecular systems as interacting
point charges that separate the energy into atom (nonbonded), bond, angle, and torsion terms—have
powered in silico modeling to provide key insights and quantitative predictions in all aspects of
chemistry, from drug discovery to material sciences [1, 2, 3, 4, 5, 6, 7, 8, 9]. While recent work in
quantum machine learning (QML) potentials has demonstrated how flexibility in functional forms and
training strategies leads to increased accuracy [10], these methods are orders of magnitude slower than
popular molecular mechanics potentials, since the learned high-dimensional function approximator
must be used also in simulation. On the other hand, the simpler physical energy functions of
molecular mechanics (MM) models are compatible with highly optimized implementations that can
exploit a variety of hardware [2, 11, 12, 13, 14, 15], but rely on complex and inextensible legacy
atom typing schemes for parameter assignment: First, a set of rules are used to classify atoms into
atom types that must encode any information about the chemical environment that will be used by
subsequent steps [16]. Next, bond, angle, and torsion types are determined by the composing atom
types. Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according
to a table of these parameter classes. As a result, atoms, bonds, angles, or torsions with distinct
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Figure 1: End-to-end differentiable assignment of parameters for a molecular mechanics potential en-
ergy function. In Stage 1, a graph net is used to generate latent atom embeddings describing local chemical
environments from the chemical graph. In Stage 2, these atom embeddings are transformed into symmetry-
encoded feature vectors for atom, bond, angle, and torsion inference via Janossy pooling. In Stage 3, molecular
mechanics parameters are directly predicted from these feature vectors using feed-forward neural nets. This
process is performed once per molecular species, allowing the potential energy to be rapidly computed using
standard molecular mechanics implementations thereafter.

chemical environments that happen to fall into the same expert-derived category are forced to share a
same set of parameters and lead to poor accuracy, while the explosion of discrete parameter classes
describing equivalent chemical environments can lead to overfitting. Even with modern optimization
frameworks [17, 18, 19] and sufficient data, parameter optimization is only possible in the continuous
parameter space defined by these fixed atom types, while the mixed discrete-continuous optimization
problem—jointly optimizing types and parameters—is intractable.

Here, we demonstrate a continuous alternative to discrete atom typing schemes that permits end-to-end
differentiable optimization of both “typing” and parameter assignment, allowing the entire force field
to be built, extended, and applied using standard machine learning frameworks. We hypothesize that
graph neural networks (graph nets) have at least equivalent expressiveness with expert-derived typing
rules. We first provide experimental evidence of this hypothesis by showing that, with acceptable
errors: (1) graph nets can recover legacy atom types in a supervised classification task; (2) graph
nets, when combined with appropriate pooling functions and a subsequent prediction stage, can
learn MM energy function parameters when trained to fit the corresponding MM energies and forces.
Next, we demonstrate the utility of such a model (which we call the Extendable Surrogate Potential
Optimized by Message-passing Algorithms, or Espaloma) to construct end-to-end optimizable force
fields with continuous atom types that can be used to fit quantum mechanics (QM) energies via
auto-differentiating frameworks.

2 Theory

2.1 An end-to-end differentiable approach to molecular mechanics parameter assignment

Here, we show how our proposed framework, Espaloma (Figure 1), operates analogously to legacy
force field typing schemes to generate MM parameters ΦFF from a molecular graph G and neural
parameters WNN, ΦFF ← Espaloma(G,WNN). We target the MM functional form (see SI 12.1):
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Stage 1: Graph nets generate a continuous atom embedding, replacing legacy atom typing. Our
proposed scheme uses graph nets to perceive the chemical environments of atoms from a chemical
graph, generating continuous embeddings hv ∈ R|G|×D for each atom v. For an introduction to graph
nets in the context of molecular modeling, see SI 12.2.

Stage 2: Symmetry-encoded pooling generates continuous bond, angle, and torsion embed-
dings, replacing discrete types. To produce representations of bond, angle, and torsion environ-
ments that are expressive and invariant w.r.t. the ordering of atoms, we use Janossy pooling [20] to
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derive their embeddings hr, hθ, hφ from atom embeddings hv ,

hrij = NNr([hvi : hvj ]) + NNr([hvj : hvi ]); (2)

hθijk = NNθ([hvi : hvj : hvk ]) + NNθ([hvk : hvj : hvi ]); (3)

hφijkl
= NNφ([hvi : hvj : hvk : hvl ]) + NNφ([hvl : hvk : hvj : hvi ]), (4)

where columns (· : ·) denote concatenation.

Stage 3: Neural parametrization of atoms, bonds, angles, and torsions replaces tabulated pa-
rameterization. Finally, feed-forward neural networks learn the mapping from atom, bond, angle,
and torsion embeddings to MM parameters ΦFF :

{εv, σv} = NNvreadout(hv); {kr, br} = NNrreadout(hr); {kθ, bθ} = NNθreadout(hθ); {kφ} = NNφreadout(hφ),
(5)

Partial atomic charges can also be determined from the molecular graph in a fully differentiable
manner using a graph net that predicts physical parameters for a charge-equilibration model [21].

2.2 Training and inference

While traditional force fields based on discrete atom types are only differentiable in the molecular
mechanics parameters they assign, our model is fully differentiable in all model parameters WNN that
govern both the assignment of atom embeddings hv , and subsequent assignment of MM parameters
ΦFF. We can therefore use gradient-based optimization to tune all of these parameters to fit arbitrary
differentiable target functions. Examples include classification loss (as in Section 3.1), parameter
regression loss, and likelihoods incorporating any differentiable observables (as in Section 3.2 and
3) such as energies, forces, and physical properties (e.g. densities, dielectric constants, and free
energies).

When it comes to deployment, in contrast with many QML force fields (e.g. [10, 22, 23]), a
neural model does not have to be executed at each time step during simulation. Once the model is
trained, the MM parameters the model generates ΦFF can be seamlessly ported to optimized MM
packages [2, 11, 12, 13], providing the same speed as traditional force fields.

3 Experiments

Traditional molecular mechanics force field parameter assignment (e.g., [24, 25, 26, 27]) uses the
attributes of atoms and their neighbors (such as atomic number, hybridization, and aromaticity) to
assign discrete atom types, and then assigns atom, bond, angle, and torsion parameters based on
these discrete types. Here, we not only demonstrate that graph nets can learn these legacy atom type
assignments with high accuracy, but they can also be trained directly on energies and forces to learn
both typing and parameter assignment simultaneously. For code availability and experimental details,
see SI 6 and 7.

3.1 Graph nets have the capacity to reproduce legacy atom typing with high accuracy.

Assigning discrete atom types closely resembles a two- or three-step Weisfeiler-Leman test [28],
which has been shown to be approximated by some graph neural network architectures [29]. Here, we
ask whether graph nets have at least equivalent expressiveness with legacy atom typing schemes by
training them to reproduce legacy (human-designed) atom types for a general small organic molecule
force field, parm@frosst [30]. We randomly selected a subset (1000 molecules) of ZINC validation
dataset [31] provided with parm@frosst to validate atom typing implementations [30] to use for
training and validation tasks. As is shown in Figure 2, graph nets reproduce legacy atom types with
high accuracy, with discrepancies occurring at sites where typing rules are less unambiguous and
where samples are scarce.

3.2 Espaloma recovers MM parameters and energies with high fidelity

We next assess how accurately Espaloma could learn to reproduce MM parameters from end-to-end
training directly on potential energies of snapshots from an atom type based MM force field, and
how well this approach could learn to generalize. In order to focus on the functional complexity of
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Figure 2: Graph nets can reproduce legacy atom types with high accuracy (98.31%98.63%
97.94%). (a) Histogram

of number of discrepancies in molecules within the test dataset; (b) Illustrations of molecules in the test dataset
with highest numbers of discrepancies between graph net-assigned and reference atom types; (c) Distribution of
predicted atom types for each reference atom type; on-diagonal values indicate agreement. The percentages
annotated under x-axis denote the relative abundance within the test dataset. Only the common carbon types are
included in the confusion matrix here; for full confusion matrix across all atom types, see SI Figure 4.

the MM potentials and limit the scope of chemical diversity, we choose a minimal dataset of small
alkanes, ethers, and alcohols with non-aromatic rings from AlkEthOH dataset [32], and generate a
series of configuration snapshots using short high-temperature MD (further details in section 7). We
report the test set performance in Table 1.

Test Training
Quantity RMSE MAPE R2 RMSE MAPE R2

Harmonic Bond + Angle Energy (kcal/mol) 0.43920.4392
0.4392 0.01570.0162

0.0153 0.99580.9961
0.9955 0.77260.7958

0.7496 0.02770.0285
0.0269 0.99530.9957

0.9950

Bond Force Constant kr (kcal / (mol * angstrom ** 2)) 35.404850.2660
18.0387 0.01800.0215

0.0148 0.86190.9653
0.7154 57.124064.8235

49.2791 0.02990.0330
0.0271 0.73910.8095

0.6466

Equilibrium Bond Length br (angstrom) 0.01270.0200
0.0013 0.00150.0021

0.0011 0.99561.0000
0.9890 0.01350.0155

0.0117 0.02990.0330
0.0270 0.73910.8111

0.6590

Angle Force Constant kθ (kcal / (mol * rad ** 2)) 3.79953.9648
3.6293 0.02760.0290

0.0264 0.86010.8805
0.8361 44.413251.4202

36.3418 0.04640.0492
0.0436 −0.2451−0.1895

−0.2839

Equilibrium Angle Value bθ (rad) 0.00430.0045
0.0041 0.00180.0018

0.0017 0.92020.9335
0.9018 0.04800.0558

0.0397 0.00590.0070
0.0049 0.49020.5411

0.4420

Table 1: Espaloma recovers MM energies and parameters when fit to MM energies. RMSE, MAPE, and
R2 between reference and predicted MM energies and parameters. Note that MAPE (Mean Absolute Percentage
Error) reports a fraction, rather than a percentage.

3.3 Espaloma can fit QM energies directly to build new MM force fields

Figure 3: Espaloma can be directly optimized against QM energies to produce a new MM force field with
comparable accuracy to traditional MM force field fitting schemes. Overall test set RMSE: 3.49664.04982.9526

kcal/mol, compared to 3.73654.45593.0209 kcal/mol for Parsley force field [16, 33]. Both reference and predicted
energy are centered to have zero mean for each molecule.

Finally, we repeat the end-to-end fitting experiment (Section 3.2) directly using a quantum chemical
(QM) target used to train MM force fields—the energies and forces in an Open Force Field [34]
optimization dataset 1.0 in QCArchive [35]. We selected chemical species with more than 1000
snapshots, and randomly choose 1000 snapshots within each system. The test set performance is
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reported in Figure 3. Since nonbonded terms are generally optimized to fit other condensed-phase
properties, we focus here on optimizing valence parameters to fit gas-phase QM, fixing the non-
bonded energies using a legacy force field [34]. According to the measures reported here, Espaloma
approach can construct MM force fields with QM-fitting performance comparable to force fields
based on discrete atom-typing.

4 Discussion

Here, we have demonstrated that graph nets have the capacity to, with high accuracy, reproduce
legacy atom typing, fit a traditional molecular mechanics force field, generalize it to new molecules,
and learn new force fields directly from quantum chemical energies and forces. The neural framework
also affords the modularity to include more types of parameters (and thereby extended functional
forms, such as Class II force fields [36]), while making it easy to refit the entire force field afterwards.

5 Broader impact

This work reduces technical barriers to data-driven force field parameterization. The most important
immediate applications are seen in drug discovery, where it is valuable to tailor force fields rapidly to
data in a lead series. If successful, the proposed methods will make it cheaper, easier, and faster to fit
force fields to data using open source software and less human effort. This could disrupt the profit
models of commercial force field vendors. (Also, unauthorized reverse-engineering of commercial
force fields could become more of a concern.) Improved capabilities for fitting MM models to data
could magnify the competitive advantages that firms can gain from in-house private data sources.
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6 Code Availability

The Python code used to produce the results discussed in this paper is distributed open source
under MIT license [https://github.com/choderalab/espaloma]. Core dependencies include
PyTorch [37], Deep Graph Library [38], the Open Force Field Toolkit [34, 39], and OpenMM [11].

7 Experimental Details

All datasets, including the ZINC that is distributed with parm@Frosst [30], AlkEthOH [32], and
QCArchive OpenForceField Optimization Set 1 [35], are split randomly across chemical species
rather than snapshots into training:test=80:20. All models are trained with 5000 epochs with
Adam optimizer [40]. Hyperparameters, namely choices of graph net layer architectures, activation
functions, learning rates, and per-layer units, are optimized with a grid search using training sets. All
experiments are done with three layers of graph convolutional neural networks with architectures
introduced in 12.2 without dropoff. GCN [41] with 32 units and leaky ReLU activation function
is used for experiments in 3.1. GraphSAGE [42] with 128 units and sigmoid activation function
is used for experiments in 1 and 3. The input features of the atoms included the one-hot encoded
element number, as well as the hybridization, aromaticity, and formal charge thereof, were assigned
using Open Force Field toolkit [39] and RDKit [43]. High-temperature MD simulations described
in Section 1 were initialized using RDKit’s default conformer generator followed by OpenMM’s
energy minimizer, with random initial velocities at the target temperature. Trajectories were simulated
using OpenMM [11]’s default LangevinIntegrator, with a temperature of 500 K, collision rate of
1/picosecond, and a timestep of 1 fs. Samples were saved every 10 steps. Reported metrics: R2: the
coefficient of determination, RMSE: root mean square error, MAPE: mean absolute percentage error;
note that the MAPE results we report is not multiplied by 100, and therefore denotes the fractional
error. The annotated 95% confidence intervals are calculated by bootstrapping the test set 1000 times.
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12 Appendix

12.1 Class I molecular mechanics force fields

In a class I molecular mechanics force field [44, 45, 46, 47, 48, 49, 50], ΦFF, the valence (bonded)
portion of potential energy of a single molecule G in vacuum with conformation x ∈ R|G|∗3 can be
factorized as bond, angle, and torsion energy,

UΦFF
(x,G) =

∑
r∈Gbond

UΦFF,bond(r(x)) +
∑

θ∈Gangle

UΦFF,angle(θ(x)) +
∑

φ∈Gtorsion

UΦFF,torsion(φ(x)), (6)

where the subscripts Gbond,Gangle,Gtorsion denote the duplet, triplet, and quadruplet subsets of the
groups of vertices in G. If we use N (·) to denote the operation to find the set of neighbors,

Gbond = {rij = (vi, vj), vi 6= vj , vi ∈ N (vj)}; (7)
Gangle = {θijk = (vi, vj , vk), vi 6= vj 6= vk, vi ∈ N vj , vj ∈ N vk}; (8)

Gtorsion = {φijkl = (vi, vj , vk, vl), vi 6= vj 6= vk 6= vl, vi ∈ N (vj), vj ∈ N (vk), vk ∈ N (vl)}.
(9)

The composing energy functions usually take harmonic or periodic forms w.r.t. the lengths
of bonds and the values of angles and torsions. With tabulated collections of parameters
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{kbond,bbond,kangle,bangle,ktorsion, φ0,torsion} we have:

UΦFF,bond(rij(x)) =
1

2
kbond,r(rij(x)− bbond,r)

2; rij(x) =|| xi − xi ||; (10)

UΦFF,angle(θijk(x)) =
1

2
kangle,θ(θijk(x)− bangle,θ)

2; θijk(x) = 〈xi,xj ,xk〉; (11)

UΦFF,torsion(θijkl(x)) =

nmax∑
n=1

ktorsion,φ,n(1 + cos(nφ− φ0,n));φijkl(x) = 〈xi,xj ,xk,xl〉, (12)

where the bracket denote the angle between three points or the dihedral angle between the two planes
formed by the two sets three consecutive points among the four points on R3. Note that, in our
implementation, we do not include improper torsion terms as they are sparsely assigned in legacy
force fields.

12.2 Graph Nets

In the context of molecular machine learning, molecules are modelled as undirected graphs of bonded
atoms, where each atom and bond can carry attributes reflecting their chemical nature from which
complex chemical features can be learned. If we write this as a tuple of three sets,

g = {V, E ,U} (13)

Here, V is the set of the vertices (or nodes) (atoms), E the set of edges (bonds), and U = {u} the
universal (global) attribute.

A set of functions (with learnable parameters) govern the three stages used in both training and
inference of a graph net: initialization, propagation, and readout. The most general description of the
message-passing procedure in the propagation stage could be found in [51], where node, edge, and
global attributes v, e,u are updated according to:

e
(t+1)
k = φe(e

(t)
k ,

∑
i∈N e

k

vi,u
(t)), edge update (14)

ē
(t+1)
i = ρe→v(E

(t+1)
i ), edge-to-node aggregate (15)

v
(t+1)
i = φv(ē

(t+1)
i ,v

(t)
i ,u(t)), node update (16)

ē(t+1) = ρe→u(E(t+1)), edge-to-global aggregate (17)

ū(t+1) = ρv→u(V (t)), node-to-global aggregate (18)

u(t+1) = φu(ē(t+1), v̄(t+1),u(t)), global update (19)

where Ei = {ek, k ∈ N v
i } is the set of attributes of edges connected to a specific node, Ei =

{ek, k ∈ 1, 2, ..., Ne} is the set of attributes of all edges, V is the set of attributes of all nodes,
and N v and N e denote the set of indices of entities connected to a certain node or a certain edge,
respectively. φe, φv, and φu are update functions that take the environment of the an entity as input
and update the attribute of the entity, which could be stateful or not; ρe→v, ρe→u, and ρv→u are
aggregate functions that aggregate the attributes of multiple entities into an aggregated attribute which
shares the same dimension with each entity. Note that it is common that the edges do not hold attribute
but only pass message onto neighboring nodes. For all models we survey here, edge-to-global update
does not apply and global attribute does not present until the readout stage, when a sum function
is applied to form the global representation (u =

∑
V ). Under this set of grammar, we review the

message-passing rules in Table 2.

13 Training losses

As mentioned in section 2.2, we can train the model using an arbitrary differentiable loss. Here, we
describe the loss functions used in the reported experiments.
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Model Edge update φe Edge aggregate ρe→v Node update φv
GCN Identity Mean NN

EdgeConv ReLU(W0(vi − vj) +W1vi) Max Identity
GraphSAGE Identity Mean∗ Normalize(NN([v : e]))

GIN Identity Sum∗ NN((1 + ε)v + e)

Table 2: Summary of representative graph nets architectures by edge update, edge aggregate, and node
update types. Models analyzed here include: GCN [41], EdgeConv [52], GraphSAGE [42], and GIN [29].
Other architectures evaluated—TAGCN [53] and SGC [54]—involve multi-step propagation, which could be
expressed as a combination of these updates and aggregates.
*: Multiple aggregation functions studied in the referenced publication.

13.1 Classification loss

In Section 3.1, we used the cross-entropy loss, as implemented in PyTorch3, to reproduce GAFF 1.81
atom types.

13.2 Training by potential energies

Given a training set of molecules {Gi} with corresponding snapshots {xi ∈ R(|Gi|×3)} and potential
energies {Ui,ref} the model parameters WNN can be optimized to maximize likelihood of the refer-
ence energy under Gaussian noise model (assuming fixed noise) where the mean of the predictive
distribution is given by the composed force field ΦFF,Θ. When fitting to QM targets, since there
is an offset in QM energies that cannot be accounted for using MM functional forms, we subtract
per-molecule mean for both predicted and reference energies. Note that more sophisticated strategies
that penalize higher-energy (lower-probability) snapshots can also be employed, depending on the
application.

13.3 Training by forces:

To exploit the rich information in the forces [55, 56, 57, 58] ∂U
∂x , which can be computed using

auto-differentiating packages, one can jointly optimize the likelihood of the reference energies and
forces (which are assumed to be independent).

3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.
nn.CrossEntropyLoss
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Figure 4: Confusion Matrix: Reference vs Learned Atom Types. Continuation of the confusion matrix
shown in Figure 2, to include not just carbon types. The blank entries are because the dataset does not cover
some of the rare atom types.
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