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Abstract
We present a new approach to learning surrogate models for simulation of com-
plex physical systems described by nonlinear partial differential equations. It
aims to capture three features of PDEs: locality, time continuity and formation of
elementary patterns in the solution by learning a local, low dimensional latent rep-
resentation and corresponding time evolution. We show that our method achieves
top performance and competitive inference speed compared to baseline methods
while operating with a 4-times more compact representation. Since the models
learn local representations of the solution, they generalize to different system sizes
that feature qualitatively different behavior without retraining.

1 Introduction
Predicting the evolution of a complex physical system through numerical simulation is a central
problem throughout engineering and the physical sciences. In many cases, the differential equations
governing the system are well understood, however, resolving the small spatiotemporal features
required to solve these equations still presents significant computational challenges. Recently there
has been a surge of interest in applying machine learning (ML) to address these challenges. There
are roughly three distinct directions emerging in the literature: (1) discovery of governing equations
directly from data [3, 20, 12]; (2) development of augmented numerical methods [2, 21, 7, 15, 18];
(3) surrogate modeling [4, 19, 1, 14, 13, 5].

Here we consider a class of surrogate models that incorporate three prominent PDE priors:

• Locality: time evolution at every point x depends only on its immediate neighborhood.

• Time continuity: solutions to partial differential equations change continuously with time.

• Formation of patterns: emergence of smallest scales that build up the solution manifold.

We present our results by evaluating the performance of this family of models on the chaotic
Kuramoto-Sivashinsky equation [11, 16].

2 Background
In this work we are interested in capturing the dynamics of a physical system that is described as
a partial differential equation of the form Eq. (1), where u(x, t) represents the configuration of the
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Figure 1: (left) Pictorial representation of a latent unroll scheme. (center) Step based unroll scheme
that obtains intermediate results at fixed intervals. (right) A comparison of representation sizes used
by different models for computation of time evolution, x-axis represent spatial resolution and y-axis
represents the number of channels (local dimensionality).

system at position x at time t.

∂u(x, t)

∂t
= f(u,∇u, . . . ,∇nu) (1)

Partial differential equations describe a wide variety of complex phenomena, ranging from turbulence
in Navier-Stokes equations to pattern formation in reaction-diffusion equation. For many systems of
practical interest, dissipation leads to the emergence of an inertial manifold [17, 9].

Traditional numerical methods capture the dynamics via iterative updates, computing the evolving
state at every time step. This is typically accomplished by discretizing the solution on a spatial grid
and specifying a functional "basis" such as polynomials, hat-basis or Fourier modes. To represent
the solution of the underlying PDE, numerical methods must maintain fine enough discretization to
accurately represent the smallest length scales of the solution. This requirement causes computational
degrees of freedom to far exceed the dimension of the inertial manifold. Furthermore, the choice of
discretization affects the time step that can be taken at each iteration without introducing large errors,
increasing computational cost.

In this work we formulate a class of ML models that alleviate some of these obstacles by using
learned representations of the solution manifold that (1) preserve spatial structure of the solution and
locality of interactions; (2) evolve continuously in time and (3) efficiently parameterize emergent
patterns in the solution.

3 Construction and Training of the Latent Field Models
3.1 The Encode-Transition-Decode Architecture
The latent field model (LFM) consists of three components: an encoder E , a decoder D, and a
derivative model F . Together, they define the relationship between the physical states of the system
u(t), corresponding latent states z(t) and their time derivatives ż (Eq. 2).

z(t) = E(u(t)) ż(t) = F(z(t)) ũ(t) = D(z(t)) (2)

To predict the future state ũ(t) of the system given an initial configuration u(0),

1. The initial state is encoded: z(0) = E(u(0))

2. The system is evolved by numerical integration of ż(t) = F(z(t)) on the [0, t] interval.

3. The final latent state is decoded to a physical state: ũ(t) = D(z(t))

Note that time evolution occurs in latent space. This differs from the standard approach where time
evolution happens iteratively in the physical state (analogous to applying encoder-transition-decoder
at every step). The difference between these approaches is illustrated in Fig. 1.

For all components (E , D, F) we use fully convolutional architectures with periodic boundary
conditions. This preserves the spatial structure of the representation and ensures that time dynamics
depend only on the immediate neighbors of each spatial point.

3.2 Loss Functions and Training
For a ‘perfect’ model, we would have

D(E(u))(t) = u(t) JE(u)u̇(t) = ż(t) JD(z)ż(t) = u̇(t)
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Figure 2: LFM achieves the highest accuracy and fast inference while operating in reduced repre-
sentation. (a) Mean absolute error as a function of simulation time; (b) velocity correlation function
at t = 90; (c) energy spectrum at t = 90. The deviation at high frequencies corresponds to modes
of irrelevant amplitude; (d) wall-clock time used to predict 1000 time steps ahead; (bot right) LFM
model unroll and reference evaluation data respectively.

where JE(u) is the Jacobian of the encoder at u, JD(z) is the Jacobian of the decoder at z and ż(t) is
the time derivative of the latent state computed as F(z(t)). This motivates our loss function:

L = L1 + L2 + L3 (3)
L1 = MSE(u,D(E((u)))) L2 = MSE(ż, JE(u)u̇) L3 = MSE(u̇, JD(z)ż)

This method has been used for equation discovery in [3]. Note that no time evolution is performed
during training. This avoids the expense of propagating gradients through the ODE integrator.

4 Related work
The idea of learning a surrogate model from time-series data for complex physical systems has been
actively addressed in the recent literature [4, 19, 1, 14, 13, 5, 8]. One of the central themes in this
line of research is the search for generic priors that boost accuracy of the resulting surrogates.

PDE-net [13] proposed a ResNet-like architecture capturing the time continuity of PDEs. Later
replaced with differentiable integrators applied for problems with partial [1] and unstructured [8]
data. Works [19, 14, 4] investigated priors originating in numerical methods such as scale separation
[19], Koopman operators [14] and Lyapunov stability [4].

Our approach of using local latent representations to represent and time evolve a dynamical system
is most closely compared to AR-DenseED architecture [5] and Lyapunov-stable model [4], both
of which use an encoder-decoder structures. In contrast, we consider the scheme of obtaining a
model trajectory by unrolling the dynamics purely in the latent space. In addition, compared to [4]
we consider nonlinear dynamics, necessary for chaotic systems. Compared to AR-DenseED we
additionally include a time continuity prior on the latent space.

5 Experiments and results
We train and evaluate the performance of latent field models and relevant baselines on the Kuramoto-
Sivashinsky [11, 16] equation (Eq. 4). This system is known to have a low dimensional inertial
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manifold, and to exhibit chaotic behavior.
∂tu + u∂xu + ∂2

xu + ∂4
xu = 0 (4)

We use a dataset that consists of trajectories and time derivatives of the solutions in the stationary
chaotic regime generated using a high resolution simulator. See Appendix A for details.

Due to the chaotic nature of the problem, even close-to-perfect models would eventually diverge
from the reference solution. This suggests an evaluation strategy that separately probes short term
accuracy and long term consistency. Short term accuracy is evaluated point-wise, while long time
scale behavior is examined based on statistically invariant quantities such as energy spectrum (Eq.
6) or (autocorrelation function Eq. 7). We also measure efficiency of the surrogates by recording a
wall-clock time required to predict the state of the system at a future time.

By varying the size of the latent representation we found that LFM model can accurately capture
the dynamics on 8 times coarser resolution, while using only 2 latent dimension for each spatial
location. This amounts to 4-fold memory savings arising from a more compact representation of the
state.

We now compare the performance of LFM to AR-DenseED [5] and a ResNet [6] architectures. For
AR-DenseED we used parameters suggested in the original paper [5] and for ResNet we adjusted
the number of parameters to approximately match the capacity of the LFM model. See Appendix
B for details. At training, the models ingest either mini-batches of states and their time derivatives
or mini-batches of trajectories of length T , depending on the training method (see Appendix C for
baseline training). For each model we performed a hyperparameter sweep (see C for details) and
compare the performance of configurations that achieved lowest cumulative pointwise error on the
training data over the course of 100 time slices.

The evaluation results of the best performing models for each architecture are shown in Fig. 2. They
compare both pointwise accuracy and statistical consistency. Our statistical consistency evaluation
suggests that all models accurately capture the hidden structure of the chaotic dynamics. From the
pointwise accuracy perspective we find that our LFM model remains close to the ground truth solution
for longer than other models. See Fig. 2 (bottom right). While pointwise error is a practical and
important for applications, we found that with current training methods and models it is unreliable
for model ranking. This concern is motivated by the large variation of model performance across
the random initializations, suggesting a lack of training pressure on error accumulation - a critical
property for surrogate models. In Fig. 2 (d) we compare model efficiency. We find all models
competitive with ResNet being fastest by a small margin.

Because our latent representation has spatial structure, it is possible to apply the model trained on
one system size to domains of different size. This is a good "stress test" since larger domains develop
spatiotemporal chaos of greater complexity. We evaluate the LFM model on large and small grids
starting from an out of distribution initial condition to assess the performance on the transient phase
and the equilibrium states (Fig. 3). The model correctly captures the transient and settles in the
expected regime at longer times. This generalization is made possible because the model only relies
on local updates that are intrinsically present in a single turbulent dataset.

6 Conclusions
In this work we have explored models that learn local latent representations of a dynamical system
and corresponding time evolution. We demonstrated that it is possible to obtain low dimensional
representation of the solution manifold that uses 4 times fewer parameters to represent the system,
achieves top performance and is among fastest at inference models. We additionally demonstrated
that local model generalize to systems of different size, capturing the change in the behavior of the
solution.

7 Broader Impact
This work contributes to the fields of scientific computing and simulation. Our datasets consist
only of snapshots of the state of a physical system. As a result, we don’t believe this work has any
implications for privacy or fairness.

As with any work in the physical sciences, we need to be aware of potentially harmful applications,
such as military technology. However, we believe that advances in scientific computing are generally
positive developments that advance quality of life.
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Figure 3: (left) Model and ground truth trajectories on a larger domain that show that model correctly
captures the transient phase and settles into chaotic regime as expected. (right) Same for smaller
domain that instead settles in a fixed pattern.Be Note that the model has not seen any stationary
solutions in the training data.
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A Dataset details
Training and evaluation data were generated using a high resolution numerical solver. For one
dimensional Kuramoto-Sivasinsky equation we used a spectral method to compute time derivatives
of the solution in combination with an adaptive time stepping method DormandPrince from scipy
library. The solution was obtained on a grid of size 256 corresponding to the domain size L = 64.
In this regime the solution is chaotic with maximum Lyapunov exponent around 0.08. The data
trajectories of length 100.0 time units were selected from the random initial solutions after discarding
the transient phase. The time separation between the sequential time slices in the dataset was chosen
to be 0.1. The resulting dataset has a mean of zero and variance of 1.3. Mean and standard deviation
of the time derivatives is 0.31.

B Architecture details
All architectural components of the reported low dimensional latent field (LDLF) are based on
composition of convolutional towers with periodic padding. The encoder architecture consists of a
tower with strides [1, 2, 1, 2, 1, 2], 64 channels in hidden layers and 2 output channels. Decoder has a
transposed architecture that has only differs in the final layer that has 1 channel and has kernel size of
12. All activation function in the encoder and decoder networks are ReLU. Time derivative network
contained 4 layers with kernel sizes [3, 1, 1, 1] and channels [64, 32, 32, 2] interleaved with tanh
nonlinearities. Time stepping was performed using an adaptive Dormand-Prince integrator.

Other models trained for comparison included ResNet and AR-DenseED architectures. For ResNet
we best performing model used 3 blocks with 64 hidden channels and 4 layers each. For AR-
DenseED architecture we followed the design provided by the authors. For both baselines the batch
normalization modules were omitted.

C Training and evaluation parameters
During training we have performed a hyperparameter sweep and reported results from the best per-
forming configurations for each architecture. All models were optimized using Adam[10] optimizer
with b1 = 0.9 and b2 = 0.99. Learning rate was explored in the range [0.01, 0.0005]. We included
multiple initialization seeds for all models in the attempt to determine the best case performance for
each model. AR-DenseED and ResNet were trained using unroll loss (Eq. 5), where we have varied
the unroll length T in the range [1, . . . , 5]].

L(x, y) =

tT∑
ti

MSE(u(ti), ũ(ti)) (5)

For evaluation of statistical consistency we used autocorrelation (Eq. 7) and energy spectrum (Eq. 6)

E(kj) =
1

2
|u(kj)|2 u(kj) =

i=N∑
i=0

u(xi)e
−2πi

kjxi
L (6)

〈u(x),u(x + ∆x)〉 =
∑
i,y

u(xi(t))u(xi(t) + ∆x) (7)

To evaluate generalization on larger and smaller grids we used domains of size L = 256 and L = 16
respectively, obtaining ground truth results using the same solver as used for dataset generation (A).
The initial conditions used to probe the transient phases are:

y _ l a r g e = ( 1 . 2 ∗ np . s i n (2∗ x ) + 0 . 1 3∗ np . s i n (5∗ x )+
0 .23∗ np . cos (3∗ x ) + 0 . 4∗ np . s i n ( 0 . 2 5∗ x + 0 . 3 4 ) )

y _ s m a l l = ( 1 . 2 ∗ np . s i n (4∗ x + 0 . 3 ) + 0 . 1 3∗ np . s i n (8∗ x + 0 . 9 ) +
0 .23∗ np . cos (12∗x−0 .6 )+0 .4∗ np . s i n (12∗ x + 0 . 3 4 ) )

To measure performance we used 1000 time steps on a grid with resolution 1024 to moderately load
the accelerators and avoid unwanted instrumentation effects. Execution time for all models was
measured on Nvidia V100 GPU.
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