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Mathematical models based on PDEs are among the 
most successful models of natural phenomena.
We consider systems described by PDEs of the form:

where             represents the configuration of the system 
at position     and time    

Traditional numerical methods simulate the dynamics via 
iterative updates, computing the evolving state at every 
time step. For this process to be accurate, smallest 
features of the solution must be fully resolved.

This requirement leads to 2 challenges:
● Computational degrees of freedom far exceed the 

dimension of the solution manifold
● Fine discretizations affect the time step that can be 

taken at each iteration without introducing large errors

Both result in an increased computational cost.

Here we formulate a class of ML models that alleviate 
some of these obstacles by using learned representations 
of the solution manifold that incorporate the following 
priors of PDEs:

1. Locality of laws of nature
2. Time continuity
3. Existence of a low dimensional solution manifold

Our model efficiently parametrizes solution manifold that 
is easier to evolve in time, while locality enables 
generalization to different simulation settings.
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● Explicit regularization of stiffness of equations in the latent space
● Learn representations that prserve invariant structures by construction?
● Stochastic formulation for higher level of coarsening
● Applications to more complex domains

We present a new approach to learning surrogate 
models for simulation of complex physical systems 
described by nonlinear partial differential equations. It 
aims to capture three features of PDEs: locality, time 
continuity and formation of elementary patterns in the 
solution by learning a local, low dimensional latent 
representation and corresponding time evolution. We 
show that our method achieves top performance and 
competitive inference speed compared to baseline 
methods while operating with a 4-times more compact 
representation. Since the models learn local 
representations of the solution, they generalize to 
different system sizes that feature qualitatively different 
behavior without retraining.

This system is chaotic and features a low dimensional solution manifold;
All models are trained on a dataset of 90 trajectories in a developed chaotic regime

Evaluation measurements:
a.    Pointwise accuracy tests short-term prediction performance
b-c. Statistical consistency tests preservation of internal structure at longer times
d.    Performance compares the time it takes to obtain solution at a future time

For pointwise accuracy we use (MAE), statistical consistency is probed using energy 
spectrum E(k) and velocity 2-point correlation

Our model achieves top accuracy, high statistical consistency and is fast to evaluate.
We also find that learned dynamics is less stiff than the original equation: requiring 
~100x fewer time-steps compared to direct integration with the same tolerance 
settings. It also uses 8x less memory than baselines operating at full resolution.

We call our models Latent Field Model (LFM). They consists of three components: an 
encoder E, a decoder D, and a derivative model F. Together, they define the relationship 
between the physical states of the system          , corresponding latent states          and 
their time derivatives 

1. Encoder:
a. Maps the input state          to a low dimensional latent field representation 
b. Learns efficient parametrization of the solution manifold; preserves spatial structure

2. Time derivative model:
a. Predicts time derivative in the latent space          for the given configuration
b. Learned dynamics is local in space and continuous in time

3. Decoder:
a. Reconstructs the high resolution state          from the latent field representation
b. Enables real space inference and training

We train and evaluate the performance of latent field models and baselines on the 
Kuramoto-Sivashinsky equation:

Generalization across system sizes:
Because our representation and 
learned dynamics are local, our model 
generalizes well to new system sizes.

● Our model correctly predicts the 
stationary-chaotic transition

● Correctly captures transient 
phenomena unseen during training

During training we learn low-dimensional representation of the solution manifold.

For a perfect model we would expect 3 correspondences:
1. Physical state         and latent field         are bijective with Encoder/Decoder as maps
2. Encoded true derivative          should correspond to the predicted derivative of latents
3. Decoded latent derivative should exactly match the true derivative

These three equations form the basis for our optimization procedure: 

During inference, we aim to perform the time evolution entirely in the latent space, in 
contrast to a traditional step-based unroll as shown below:
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