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Abstract

Wepresent a high dimensional test statistic inspired directly by the Kolmogorov–Smirnov (KS) test statistic [1, 2] and
Press’ extension of the KS test to two dimensions [3]. We call this the ddKS statistic. To preclude the high compu-
tational cost associated with working in higher dimensions, we present an implementation using tensor primitives.
This allows parallel computation on CPU or GPU. We explore the behavior of the test statistic in comparing two
three-dimensional samples, and use a standard statistical method - the permutation method - to explore its signif-
icance. We show that, while the Kullback–Leibler divergence is a good choice for general distribution comparison,
ddKS has properties that make it more desirable for surrogate model training and validation than the former.

Motivation

• Comparison of distributions, especially with strong statistical guarantees, is important throughout physical sci-
ences and surrogate modeling

• Statistical comparison in higher dimensions than 1 is often overlooked

Test Statistics

• Numerical summaries of data values to set thresholds
for hypothesis testing

• Use cases:

– One-sample tests (data is compared to given prob-
ability distribution)

– Two-sample tests (determine if two data sets are
drawn from the same distribution)

• Two-sample tests gain even more importance e.g.
through rise of generative models in machine learn-
ing

• As number of data samples increases, fast computa-
tion of statistical tests is invaluable for most analyses

One Dimensional
• Popular statistical tests (e.g. integratedmean squared
error or Earth Mover’s Distance) only used in one-
dimensional space

• Scaling to higher dimensions often paired with high
time cost

• One-dimensional tests cannot identify covariances be-
tween variables

• Most test statistics require assumptions/approxima-
tions of underlying distribution

• The Kolmogorov-Smirnov test:

– Also one-dimensional, but non-parametric
– Defined as maximum difference between two cu-
mulative distribution functions (CDF)

Dn = sup
x

|F1,n(x)− F2,m(x)| (1)

• KS one of the most general non-parametric tests, us-
ing both shape and position of CDFs

Definition

• We take the case of the two sample test of N samples between predicted Xp and true Xt, each of dimension d

• We seek to test the null hypothesis H0, that the two samples come from the same distribution. Statistical
significance p is then compared to action level α = 0.05, and if p ≤ α, H0 can be rejected.

The ddKS Test Statistic

• ddKS compares cumulative distribution function be-
tween two distributions

• Use membership in orthants partitioned at each point
in Xp and Xt as surrogate for full CDF

• Region membership calculated in 2d sized vector -
xi ∈ Xp and V p

j (xi), V
t
j (xi) is jth component of the

membership vector

• ddKS is then defined as

Dp = max
i,j

|V t
j (xi)− V p

j (xi)| (2)

Permutation Test

• Allows for the calculation of statistical significance us-
ing any distance or divergence measure

• Calculate test statisticDp for predictedXp and trueXt

• Randomly mix Xp and Xt to produce two new distri-
butions made of approximately half the samples from
both, recalculating Dp for the two new distributions
(labelled D0)

• Repeat M times to produce D0,i, i ∈ [1,M ], with M
large enough to approximate Dp under the Null hy-
pothesis

• p-value is the fraction of D0,i greater than Dp

p =
NDp<D0,i

N
(3)

• To account for binomial statistics of NDp<D0,i
use ex-

pectation value

〈p〉 =
1 +NDp<D0,i

2 +N
(4)

High Dimensional CDF

• Calculating a CDF in
high dimensions is am-
biguous

• We use a method in-
spired by Press [3], cal-
culating the member-
ship of the orthants
surrounding each test
point.

Figure 1: One point at a time is se-
lected (black) to divide the space into
octants. The number of points from the
two data sets (red, blue) in each octant
are counted and compared. Animation
at youtu.be/NcUta4lBJPU

Considered Test Statistics
• Because of the permutation test, we can use any dis-
tance or divergence as a test statistic. To show ddKS’s
utility for physical sciences, we compare it to two
other test statistics:

– The one dimensional KS test: We calculate the KS
test statistic on each dimension individually, sum-
ming those to create a pseudo-multi-dimensional
test statistic. We indicate this as ks-1d on figures

– We also calculate the diagonal distance of each
point in each pairwise dimension using the l2 norm,
subsequently summing each dimension’s KS test
statistic as above. We indicate this as ks-diag on
figures

– The Kullback-Leibler (KL) Divergence: We calcu-
late the KL divergence between an estimated prob-
ability density function of the two distributions. We
use a histogram using Scott’s [4] rule, sizing the
number of bins by ∝ N

d
d+2 , to estimate probability

density. We indicate this as kldiv-hist on figures
– We also calculate a lower resolution probability
density using only 3 bins in each dimension, sub-
sequently calculating the KL Divergence as above.
We indicate this as kldiv-hist25 on figures

Implementation

• Loop based implementation possible: loop through every point in one distribution, counting how many points
fall in each surrounding orthant, this implementation was prohibitively slow to calculate during testing (O

(
N 2

)
)

for all N

Tensor Primitive Based Computation

• By using pytorch tensor primi-
tives, implicit parallelism can be
used for small N , reducing time
complexity to O (1) and enabling
GPU calculation

• Trade time for memory complexity
by constructing tensors (P,Q,T,U)
from Xp and Xt where P [i, j, k] =
Xp [i, j] for all k

• Build tensors of partition compar-
ison by performing elementwise
operations, e.g.

GP = P ≥ Q, (5)

• Each point is surrounded by 2d or-
thants. We construct a member-

ship tensorM by using a positional
encoding function

S (x, f ) = (−1)b4fxc (6)

with f = 2−j−2 and x ∈
[
0, 2d − 1

]
,

shown for 3 dimensions in Figure
2.
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Figure 2: Positional Encoding function S for 3 di-
mensions

• Then, we fill the membership ten-

sor

M [i, j] =

N∑
k=1

d∏
j=1

(
G [l, j, k] · S [i, k]

+

∣∣∣∣S [i, k]− 1

2

∣∣∣∣) (7)

• Calculate ddKS divergence from
each distribution to the other

D1 = max |M1 −M2| (8)

D2 = max |M3 −M4| (9)

• Finally, average to calculate the fi-
nal metric

D =
D1 +D2

2
(10)

Time Complexity

• ddKS and KL Divergence are both O
(
N 2

)
at large N

• pytorch’s implicit parallelization makes all metrics
O (1) at small N (except loop based implementations
- not shown on figure 3)
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Figure 3: Time to evaluate versus number of points for metrics considered. Time
is recorded for permutation tests using 100 permutations, therefore the number to
evaluate the test statistic once is ≤ 100× that recorded on this chart. Estimated
time complexities as N → ∞ are printed to the right side of each line

Higher Dimensions
• A test set for higher dimensions was constructed.
Both samples were filled with 50% background from a
uniform distribution from -100 to 100. Then, a hyper-
sphere of dimension d was constructed, the radius 50
and 45 in each respective distribution.

• ddKS is able to reject the null hypothesis for every trial
up to dimension 3 at α ≤ 0.05

• ddKS is able to sometimes reject the null hypothesis
in dimension 4 ≤ d ≤ 8

• Above dimension d ≥ 9, ddKS is no longer able to
reject the null hypothesis

• KL Divergence is able to reject the null hypothesis for
α ≤ 0.05 sometimes in dimensions d ∈ [1, 3, 4, 5]

• Above dimension d ≥ 5, KL Divergence requires ≥
32GB of memory, including requesting 374PiB of mem-
ory for dimension d = 10
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Figure 4: Time complexity and significance with increasing dimensions for ddKS
and KL Divergence using Scott’s rules for constructing the histogram. Each permu-
tation test was performed with 20 permutations, and each trial was performed 10
times. The green region indicates regions where H0 could be rejected to α ≤ 0.05

Accelerated Computations

Subsampling
• High cost incurred by calculating
membership vectors of regions
centered at every

• Uniformly sampling less than N
points from each distribution as
centers reduces complexity

– Faster by a constant factor if a
fixed proportion ofN points are
subsampled

– O (N) for constant number of
subsampled points

• Tests show similar statistical effi-
ciency to full ddKS, described in
the Behavior section

• Expected to have lower statistical
efficiency for distributions with dif-
ferences only in the tails

Voxel Based
• Spatially decompose space into d-
dimensional voxels and fill with
both sample sets

• Divide space into orthants using
each non-empty voxel as an origin

• Approximate D by finding the
largest difference in orthant occu-
pation

• O(NV ) orO(V 2) scaling forN data
points and V voxels

• Tests show ∼ O
(
2dN

)
and sim-

ilar behavior to full ddKS, with
decreased performance on ”Back-
ground Included” data

• Pairwise comparisons within close
voxels should be implemented to
improve performance on back-
ground included data

Radius Based

• Select 2d origins corresponding to
the corners of the entire sample
space

• For each origin, sort the data
points according to distance from
origin (O(2dN logN) operation)

• Approximate D by comparing
sample membership to each ori-
gin between Xp and Xt for each
test point (O(2dN) operation)

• Tests show ∼ O
(
2dN

)
time com-

plexity, and comparable behavior
to full ddKS

• Current implementation is loop
based, as such is slower than ddKS
until N > 10, 000. Rewrite in C++
would increase speed.

Data

• Two pathological datasets were created: one to illustrate the problem with using one dimensional test statis-
tics, the other to demonstrate an oft-encountered detection physics problem: comparison of signals in varied
background

Cherenkov Cone

• A datasetmimicking data collected in Cherenkov cone
detectors was constructed

• A charged particle traveling at speed faster than light
in quartz enters a quartz medium, and emits photons
at ϕ from the track, uniformly distributed azimuthally
around the track

• An ideal detection plane collects the photons location
and time of arrival

• Compared with photons emitted isotropically from
the top plane of the quartz medium, the single di-
mensional distributions of detection location and time
look identical, however their full distribution is clearly
not identical
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Figure 5: Dataset constructed mimicking photon emission during Cherenkov pro-
cess. Histograms of detection position and time (silver and copper hatched regions)
overlap almost exactly.

Background Included
• A cone was generated as above, but time in a very
large quartz medium

• Volumetric radiological contamination of the quartz
was simulated, and photons emitted isotropically, uni-
formly distributed within the quartz volume are also
detected

• Comparison between two different ”cone”s is then
difficult because of the multiple scales of the distribu-
tion. Two datasets including cones with ϕ = 15◦ and
ϕ = 20◦ were simulated.

• Comparing the two distributions, the single dimen-
sional distributions of detection location and time
look very similar, however their full distribution is not
identical
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Figure 6: Dataset constructed mimicking photon emission during Cherenkov pro-
cess with a volumetric background. Histograms of detection position and time (sil-
ver and copper hatched regions) overlap closely.

Behavior

Cherenkov Cone

• ddKS, and ddKS using subsampling all reject the null
hypothesis to α ≤ 0.05 by 5 points per sample

• KL Divergence and KL Divergence (∼25 bin) reject the
null hypothesis by 15-20 points per sample

• One dimensional KS tests cannot reject the null hy-
pothesis to α ≤ 0.05 until > 20 points per sample
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Figure 7: P-Value versus number of points for KL, 1d KS, ddKS tests on the compar-
ison between a Cherenkov cone and a volume source. Each permutation test was
performed using 100 permutations, and trials were repeated 25 times.

Background Included
• ddKS is able to reject the null hypothesis to α ≤ 0.05
by ∼ 100 points per sample

• KL Divergence rejects the null hypothesis to α ≤ 0.05
by ∼ 125 points per sample

• ddKS using subsampling is able to reject the null hy-
pothesis to α ≤ 0.05 by between 125 and 1000 points
per sample

• KL Divergence (∼25 bin) is never able to reject the null
hypothesis to α ≤ 0.05
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Figure 8: P-Value versus number of points for KL, 1d KS, ddKS tests on the compar-
ison between two Cherenkov cones with θ of 15deg and 20deg in a wide background
of volumetric photon emissions. Each permutation test was performed using 100
permutations, and trials were repeated 25 times.

Conclusions

• In general, we find ddKS to be a useful test statistic for high dimensional data, out-performing one dimensional
metrics and KL divergence on the scientific data sets we explored

Applications
• ddKS is a metric, which suggests its use as a loss func-
tion for high dimensional data - in particular in scien-
tific applications

• Surrogate modeling (replacing computational expen-
sive simulators of scientific data with ML applications)
is growing in popularity. ddKS is useful as uncer-
tainty quantification or loss function for these surro-
gate models.

• ddKS could place statistical significance on predic-
tions from other ML applications with high dimen-
sional latent spaces

Future Work

• Investigation of theoretical ways to determine signif-
icance would reduce computational cost by avoiding
the permutation test

• Further development of accelerated methods (includ-
ing acceleration of dimension related time complex-
ity) will make ddKS more usable

• High dimensional CDF approximations in other mea-
sures (such as Earth Mover’s Distance) could be used
as a loss function for generative modeling
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