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Summary:

We train a neural conditional density estimator to perform fast
Bayesian inference for gravitational waves. Using normalizing flows,
we learn posterior probability distributions over the full 15D space of
binary black hole system parameters, given detector strain data
from multiple detectors. We apply the method to the first
gravitational-wave detection, GW150914, obtaining results
consistent with standard sampling algorithms.

This is the first demonstration that deep-learning can be to infer all
15 binary black hole parameters from real gravitational-wave strain
data, including accurate estimates of uncertainties.

Context:

Since the first discovery in 2015, the LIGO and Virgo gravitational-
wave observatories have published details of 50 compact binary
mergers, all of which have been analyzed using Bayesian inference.
Using standard methods, this is computationally expensive and time
consuming, requiring many waveform model evaluations.

Need for new and faster approaches:
- Rapid multi-messenger follow up
- Higher event rate with improved detectors
- Enable use of waveform models with more physics
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Normalizing flows:
Figure: Comparison of posteriors for GW150914 generated by the neural network
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given strain data s, using a neural conditional density estimator
q(@]s). Parameter Description Prior Extrinsic
(M1, mo) component masses 10 M5,80 Mg|, my > ms No
A normalizing flow f is an invertible mapping on a sample space Pec reference phase 0, 2] No
with simple Jacobian determinant. Define Le,geocent time of coalescence —0.15,0.1 J Yes
dr, luminosity distance 100 Mpc, 1000 Mpc| Yes
_ _1 _1 (a1, as) dimensionless spin magnitudes 0,0.88] No
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05N inclination relative to line-of-sight |0, |, uniform in sine No
- D « . Y polarization angle 0, 7] Yes
where 7 = 4 (0,1)”. Since n(u) is easy to evaluate and sample so (0, 5) sky position uniform over sky Vos

is g(@]5).
Table: Binary black hole system parameters 6. Training set consists of 10° elements, with

. Use a neural spline coupling flow to define a sufficiently flexible =~ 10% reserved for validation. Parameters labelled “extrinsic”™ were chosen at train time, as
q(0|s). [Durkan et al, 2019] were noise realizations, effectively enlarging the training set.

Likelihood-free training:

Train g(@|s) —> p(@] s). Requires simulated data, but no likelihood
evaluations or posterior samples:

L= —/dsdé’p(é’,s) log q(0]s)

N
1 N
N Z log q (6(1) \s(z)> (Monte Carlo approximation)
i=1
where 09 ~ p(0) and s'9 ~ p(s]0)

1. Sample prior, 8% ~ p(6).

2. Simulate a waveform, i) = h(@W).

3. Add noise, s = D + n® where n¥ ~ pSn(n). Detector noise
IS assumed stationary Gaussian, with power spectral density
estimated prior to event.

4. Evaluate g(8"|s"), and minimize L.

- IMRPhenomPv2 precessing waveform model.
- Waveforms compressed using a singular value decomposition.

- Flow detalls:
15 coupling transforms, with rational-quadratic spline
functions.
- Each coupling transform defined by fully-connected residual
network, with 10 blocks of two 512-unit hidden layers.

 Training details: 500 epochs @ batch size 512, Adam optimizer.

Conclusions:

- We performed accurate parameter estimation on GW150914
strain data from multiple detectors in the full 15D space.

- Network learns global set of posteriors p(€@| s) for all strain data
consistent with training distribution. We evaluated performace
across parameter space using a P—P plot test.

- Trained network generates 5,000 posterior samples per second.

Next steps:

« Condition flow also on detector noise characteristics, which
vary slightly from event to event. This would allow to fully
amortize training time over many detections.

- Extend to treat longer waveforms (e.g., binary neutron stars)

- Move beyond idealization of stationary Gaussian noise.
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