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Abstract

Many combinatorial optimization problems relevant to computer science, compu-
tational biology and physics can be tackled with simulated annealing, which is a
powerful framework for optimizing the properties of complex systems through the
lens of statistical mechanics. However, simulated annealing (SA) and its quantum
counterpart, simulated quantum annealing (SQA), are traditionally implemented via
Markov chain Monte Carlo, often displaying slow convergence to optimal solutions
for challenging optimization problems. Here we combine the variational principle
in classical and quantum physics with recurrent neural networks, whose dynamics
are naturally devoid of slow Markov chains to accurately emulate annealing in its
classical and quantum formulations. We find that a variational implementation of
classical annealing is not only superior to its quantum analog in terms of speed of
convergence and accuracy of solutions but also better than traditional SA and SQA
for the Edwards-Anderson model on system sizes up to 40× 40 spins.

1 Introduction

Various heuristics have been used over the years to find approximate solutions to optimization
problems. Among the most notable heuristic methods is SA [1, 2, 3], which refers to a family of
in silico techniques for the optimization of complex systems. SA mirrors the analogous physical
annealing process in materials science and metallurgy where a crystalline solid is heated and then
slowly cooled down to its lowest energy and most structurally stable crystal arrangement. Through
the addition of quantum fluctuations, the conceptual advances brought by thermal annealing can be
transferred to the quantum realm. The resulting algorithm, known as quantum annealing (QA), has
gained momentum since the advent of commercially available quantum annealing devices [4, 5, 6]
which physically implement annealing in the presence of quantum fluctuations.

Machine learning, already explored as a condensed-matter and statistical physics research tool,
provides a complementary paradigm to the above approaches to optimization of complex systems [7].
Artificial neural networks in particular have been used to identify phases of matter [8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18] and increase the performance of Monte Carlo simulations [19, 20, 21, 22, 23,
24, 25, 26]. A peculiar aspect of neural networks is their ability to accurately represent the underlying
state of classical [27] and quantum systems [28, 29, 8, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].
Notably, by combining them with variational principles, neural autoregressive models such as the
recurrent neural network (RNN) can accurately describe the equilibrium properties of classical and
quantum systems by taking advantage of autoregressive sampling which naturally avoids the use of
Markov chains [38, 39]. These models learn compact representations of the correlations between the
components in a physical system in a similar way to natural language.

In this paper, we take advantage of the expressive power of RNNs to devise a variational version
of classical and quantum annealing to solve optimization problems. We show that our variational

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



Figure 1: (a) An illustration of the variational classical annealing protocol. Here we illustrate the
free energy against the order parameter of the system. The dashed curves denotes the probability
distribution that minimizes the free energy (b) A simplified illustration of the variational quantum
annealing protocol. Note that downward dashed arrows stands for gradient descent minimization.

emulation of classical annealing outperforms standard heuristics, namely SA and SQA [40, 41, 42]
on the 2D Edwards-Anderson model.

2 Methods

2.1 Variational Classical Annealing

We first consider a variational implementation of simulated (or classical) annealing termed variational
classical annealing (VCA). We take the variational approach of statistical mechanics [27], where a
parameterized probability distribution pλ(σ) approximates the Boltzmann distribution of the system.
λ are the parameters of the model distribution which are optimized so that pλ(σ) represented with
RNNs, reproduces the equilibrium properties of the system at temperature T . In VCA, we search for
the ground state of an optimization problem encoded in an Hamiltonian Ĥtarget, by considering the
variational free energy

Fλ(t) = 〈Ĥtarget〉λ − T (t)Sclassical(pλ), (1)

which provides an upper bound to the true instantaneous free energy and, can therefore be used
at each annealing stage to update λ via gradient-descent techniques. The parameters that are
optimized at temperature T (t) are used as input at temperature T (t+ δt) to ensure that the model’s
distribution is always near its instantaneous equilibrium state. 〈...〉λ denotes ensemble averages
taken over the probability pλ(σ). The classical von Neumann entropy is given by Sclassical(pλ) =
−
∑

σ pλ(σ) log (pλ(σ)), where the sum runs over all the elements of the state space {σ}. In our
annealing setting, the temperature is decreased from an initial value T0 to 0 using a linear schedule
T (t) = T0(1− t), where time t ∈ [0, 1], which is analogous to traditional implementations of SA.
We note that this annealing approach has been suggested in Ref. [27] as a possible solution to the
mode collapse problem in the simulations of the equilibrium properties of classical systems. Here,
we implement it to solve optimization problems with RNNs.

We summarize the VCA procedure in Fig. 1(a). We initially perform a warm-up step to bring a
randomly initialized variational probability distribution to the equilibrium state of Fλ(t = 0). This
is done by performing Nwarmup gradient descent steps to minimize the free energy Fλ(t = 0) as
illustrated in Fig. 1(a1). At each time step t, we reduce the temperature of the system from T (t)
to T (t + δt). This effectively changes the shape of the free energy landscape of the system (see
Fig. 1(a2)). We then perform a training step by taking Ntrain gradient descent steps in order to
re-equilibrate the model to a new minimum of the free energy at T (t+ δt) as illustrated in Fig. 1(a3).
Finally, by repeating over the last two steps Nannealing times, we reach temperature T (1) = 0, which

2



is the end of the annealing protocol (see Fig. 1(a4)). In this case Nannealing = (tf − ti)/δt = 1/δt
where δt is a user-defined constant. In the absence of thermal fluctuations, pλ(σ) is expected to
converge to a distribution peaked around configurations with energies close to the ground states of
the target Hamiltonian Ĥtarget.

2.2 Variational Quantum Annealing

In quantum annealing [43, 44, 45, 46], the search for the ground state of an optimization problem
encoded in the target Hamiltonian Ĥtarget, is generally done by considering the following quantum
Hamiltonian

Ĥ(t) = Ĥtarget + f(t)ĤD, (2)

where quantum fluctuations are introduced via a driving term ĤD that does not commute with
Ĥtarget. The function f(t) is a user-defined time-dependent schedule function such that f(0) = 1

and f(1) = 0. Quantum annealing usually starts with a dominant driving term ĤD � Ĥtarget chosen
so that its ground state is easy to prepare and simulate. The strength of the driving term is then
subsequently reduced –typically adiabatically– using the schedule function f so that at the end of
annealing, the system is in the lowest state of the target Hamiltonian. In our paper, we choose a linear
schedule f(t) = 1− t.
Here, we leverage the variational principle of quantum mechanics and propose a strategy to simulate
quantum annealing dubbed variational quantum annealing (VQA). Our framework is based on the
variational Monte Carlo (VMC) method, a quantum Monte Carlo that simulates equilibrium properties
of quantum many-body systems at zero-temperature [47]. In VMC, the ground-state wave function
of a quantum Hamiltonian Ĥ is modeled via an ansatz |Ψλ〉 where λ are the variational parameters.
The variational principle guarantees that the expectation value of the energy over the variational state
〈Ψλ|Ĥ|Ψλ〉 is an upper bound to the ground state energy of Ĥ . Thus, we use it as a cost function to
optimize the parameters λ. In a similar spirit, within our VQA setting, we define a time-dependent
cost function E(λ, t) ≡ 〈Ĥ(t)〉λ = 〈Ψλ|Ĥ(t)|Ψλ〉.
Our VQA setup is implemented via the protocol described in Fig. 1(b). We start by randomly
initializing the parameters λ of the variational wave function. Then, we perform a warm-up step to
prepare our ansatz close to the ground state of the Hamiltonian Ĥ(0), as illustrated in Fig. 1(b1). To
do so, we apply Nwarmup gradient descent steps to stochastically minimize the expectation value
E(λ, t) at a fixed time t = 0. The obtained variational energy after this step is E(λ0, t = 0).
Next, we perform an annealing step by changing the time t from t = 0 to t = δt, while keeping
the parameters λ0 of the variational wave function fixed. Hence, the obtained variational energy
is E(λ0, t = δt) as shown in Fig. 1(b2). Furthermore, we apply a training step by taking Ntrain

gradient descent steps to bring the ansatz closer to the new instantaneous ground state. At the end of
the training step, we obtain the energy E(λ1, t = δt) as illustrated in Fig. 1(b3). Finally, we repeat
the annealing step and the training step Nannealing times until arriving at t = 1, which indicates the
end of the annealing. Here, the system is expected to converge to the ground state of the optimization
problem (see Fig. 1(b4)). Analogously to VCA, we choose RNN wave functions [38, 39] as ansätze
to implement the protocol described above.

3 Results

We benchmark our variational neural annealing algorithms on a 2D problem Hamiltonian that not
only exhibits disorder but also frustration, a property that makes it harder to solve as in constraint
satisfaction problems. We focus on the Edwards-Anderson (EA) spin glass which has been studied
experimentally [48], numerically [40, 41, 42] and theoretically [49]. This model is specified by the
target Hamiltonian: ĤEA = −

∑
〈i,j〉 Jij σ̂

z
i σ̂

z
j , where the sum runs over nearest neighbours and the

coupling Jij are drawn independently from a uniform distribution in the range [−1, 1]. In the absence
of a longitudinal field for which solving the EA model is NP-hard, the ground state can be found
in polynomial time [49]. For each random realization of the couplings Jij , we use the spin-glass
server [50] to obtain the exact ground state EG. This feature makes EA model a good benchmark for
our method particularly for large system sizes. To quantify the accuracy of our method, we use the
residual energy εres [51, 40, 41, 52, 53], defined as εres =

[
〈ĤEA〉stat − EG

]
typ. For VQA and VCA,
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Figure 2: (a) Comparison of the residual energies per site between VCA, VQA and CQO for the
Edwards-Anderson model with system size of 10× 10 spins. (b) Similar comparison between VCA,
SA and SQA for a system size of 40× 40 spins.

〈...〉stat stands for arithmetic averages taken over 106 different independent configurations, that we
autoregressively sample at the end of annealing from the RNN. Our choice for the RNN architecture
is inspired by the success observed in Ref. [38], where a two-dimensional RNN was capable of
representing the ground state of the two-dimensional transverse field Ising model with high accuracy.
Here, we use 25 samples per each gradient update to train the RNNs. For SA and SQA, it denotes the
arithmetic average over 25 independent Monte Carlo runs.

[
...
]

typ represents the typical (geometric)
average over 25 different realizations of disorder.

As a first benchmark for VCA and VQA, we choose a system size N = 10 × 10 spins. First,
we run VQA with a one-body driving term ĤD = −Γ0

∑
i σ̂

x
i as shown in Eq. (2) and with an

initial transverse magnetic field Γ0 = 1. For VCA, we use the classical von Neumann entropy as
a driving term in Eq. (1) and an initial temperature T0 = 1. To demonstrate the advantage brought
by the annealing protocols, we first perform VCA with zero thermal fluctuations, i.e., with an initial
temperature T0 = 0, known in the literature as classical-quantum optimization (CQO) [54, 55, 56].
In Fig. 2(a), we plot the residual energy per site against the number of annealing steps Nannealing for
VCA and VQA and against the number of training steps Nsteps for CQO. We observe that finding
the ground state of the EA model by performing directly a stochastic optimization of the variational
energy of the problem Hamiltonian is less efficient compared to emulating an annealing dynamics in
the optimization procedure. We equally observe that the VCA method is orders of magnitude more
accurate than VQA and CQO for a large number of annealing steps.

Since VCA was found to be optimal in the previous benchmark, we use it to further demonstrate
the ability to do variational annealing on a larger system size of 40× 40 spins. Note that the VCA
protocol remains the same for all system sizes provided that the hyperparameters of the model,
namely the number of hidden states of the RNN cell, are sufficient to capture all the properties of the
system at those sizes. For comparison, we use SA as well as SQA [40, 41] with P = 20 trotter slices.
We show the results in Fig. 2(b), where we plot the residual energy per site against Nannealing for SA,
SQA and VCA. We first confirm the qualitative behavior of SA and SQA obtained in Refs. [40, 41].
We also observe that VCA can achieve a lower residual energy for large annealing steps, which is
about three orders of magnitude better than SQA and SA.

Conclusion

We presented a variational emulation of classical and quantum annealing using recurrent neural
networks on the 2D Edwards-Anderson spin glass. In contrast to known results in the literature [40,
42], we have found variational classical annealing superior to its quantum counterpart. Furthermore,
compared to SA and SQA, VCA achieves significantly better results on the EA model. Additional
preliminary results suggest that these advantages remain true for the Sherrington-Kirkpatrick model
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and other fully connected glasses [57]. These results advocate for the use of VCA as a competitive
algorithm to tackle real-world optimization problems.

Broader Impact

Optimization problems have a wide field of application in various areas such as science, industry,
governance and medicine. For this reason, our framework could be used in those areas to tackle chal-
lenging problems and, potentially foster technological advancements, especially in the benchmarking
of future quantum computers. We point out that the defense sector may also show interest in this
research, as demonstrated by its current investment in quantum computing in general and quantum
annealing technology in particular.
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