
Domain adaptation techniques for improved
cross-domain study of galaxy mergers
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Abstract

In astronomy, neural networks are often trained on simulated data with the prospect
of being applied to real observations. Unfortunately, simply training a deep neural
network on images from one domain does not guarantee satisfactory performance
on new images from a different domain. The ability to share cross-domain knowl-
edge is the main advantage of modern deep domain adaptation techniques. Here we
demonstrate the use of two techniques — Maximum Mean Discrepancy (MMD)
and adversarial training with Domain Adversarial Neural Networks (DANN) — for
the classification of distant galaxy mergers from the Illustris-1 simulation, where
the two domains presented differ only due to inclusion of observational noise. We
show how the addition of either MMD or adversarial training greatly improves the
performance of the classifier on the target domain when compared to conventional
machine learning algorithms, thereby demonstrating great promise for their use in
astronomy.

1 Introduction

The study of galaxy mergers plays an important role in discerning the existence of different types of
galaxies, documenting their origins, and furthering our understanding of the evolution of the entire
universe and its appearance today. It has been shown that machine learning can greatly advance the
study of merging galaxies [1, 16, 12, 4], yet without the ability to connect the knowledge obtained
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from disparate large-scale simulations and astronomical surveys, we are at a significant disadvantage
towards the goal of harnessing all available data.

Images produced by astronomical simulations are made to mimic real observations from a particular
telescope, but even the slightest differences (which are unavoidable) can cause a classification model
trained on simulated images to perform substantially worse on related real data. One such example can
be found in [12], where authors used a data set of merging galaxies from the EAGLE simulation [13]
made to mimic SDSS observations and real SDSS images [20]. In this paper, authors show that
the performance of the classifier on the task of distinguishing merging from non-merging galaxies
trained on one data set had much lower accuracy when classifying the other data set: 53− 65%, with
the classifier trained on real SDSS images and then applied to EAGLE simulation images yielding
particularly poor performance. Similarly, in [4] authors work with distant merging galaxies from
the Illustris-1 cosmological simulation [17]. Here it was shown that, even in the case where the
domains only differ due to inclusion of noise to mimic the Hubble Space Telescope observations,
the accuracy of classification in the domain the model was not trained on hovers around 50%, no
better than random guessing. These two examples are indicative of the need for domain adaptation
techniques to be applied in astrophysical contexts.

Domain adaptation techniques are used to detect the shift between source domain and target domain
distributions [5, 18, 19]. This functionality is very useful in situations often found in astronomy
where models are trained on labeled simulations and then applied to unlabeled real data. In this paper
we apply two domain adaptation techniques as transfer loss: MMD [15, 7] and adversarial training
using DANNs [6]. We demonstrate both techniques on a data set similar to the one from [4]: we
use simulated distant merging galaxies from Illustris-1 at redshift z = 2, both without (source) and
with (target) the addition of random sky shot noise to mimic observations from the Hubble Space
Telescope. We also test two networks for a comparison of results across architectures: DeepMerge,
a simple network for classification of galaxies presented in [4], as well as the more complex and
well-known ResNet18 [9]. In both cases, we show that the use of the identified domain adaptation
techniques lead to a significant improvement in the performance of the classifier on the target domain.

2 Methods

In our experiments, the neural network is trained using the total loss LTotal:

LTotal = LCL + λTLLTL, (1)

where we label LCL and LTL as classifier loss (cross-entropy) and transfer loss. The effects of MMD
and adversarial training are applied through the latter which is weighted by constant λTL.

In order to detail MMD and adversarial training below, we first introduce the following conventions:
we denote the source and target domains as Ds and Dt and their respective distributions as Ps and Pt.
Since the source domain data are labeled, we have ns pairs of images and labels {xs,ys}, while in
the unlabeled target domain we only have nt unlabeled images xt. Finally, data from both domains
are associated with domain labels: ds for source and dt for target domain.

Maximum Mean Discrepancy (MMD) as a transfer loss works by minimizing the distance be-
tween the means of Ps and Pt. While it is possible to estimate Ps and Pt, in practice, no computa-
tionally expensive density estimation is necessary [11]. Instead, kernel methods may be applied to
determine their means for subtraction and an optimization is undertaken in an RKHS (Reproducing
Kernel Hilbert Space):

D(Ps,Pt,F) := sup
||f ||≤1

EPs [〈k(xs), f〉]− sup
||f ||≤1

EPt [〈k(xt), f〉] = sup
f
〈µs − µt, f〉, (2)

where D denotes the kernel distance as a proxy for mean discrepancy, xs and xt are random variables
drawn from Ps and Pt respectively, f closely resembles a cumulative distribution function, and the
simplification follows from the reproducibility property of RKHS: 〈f, k(x, ·)〉 = f(x) [8, 11]. While
in practice, k can be considered a general kernel, we follow [21] where k is a linear combination of
multiple Gaussian Radial Basis Function (RBF) kernels to extend across a range of mean embeddings.

By this definition, if Ps 6= Pt, then there must exist some f such that the distance between the
two means is maximized [11]. Clearly, the inner product is maximized for the identity 〈a, a〉 = 1.
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Therefore, f must equal µs - µt to maximize the mean discrepancy [11]. This leaves us with the final
transfer loss, after some discretization:

LTL =
1

m(m− 1)

∑
i!=j

k(xs(i), xs(j))− k(xs(i), xt(j))− k(xt(i), xs(j)) + k(xt(i), xt(j)), (3)

where m is the total number of samples. Here the distance is expressed as the difference between
the self-similarities of source (EPs

[k(xs, x
′
s)]) and target (EPt

[k(xt, x
′
t)]) domains and their cross-

similarity (2EPs,t
[k(xs, xt)]).

Domain adversarial training employs a DANN to distinguish between the source and target
domains [6]. DANNs are comprised of three parts: feature extractor (G), label predictor (L), and
domain classifier (D). Like all deep learning models applied for the classification of images, the
feature extractor uses convolutional layers to extract features from images, while the label predictor
has dense layers which output the class label. In contrast, the domain classifier, which is also built
from dense layers, is unique to DANNs and is used to predict the domain labels.

The domain classifier is added after the feature extractor as a parallel branch to the label predictor,
and it includes a gradient reversal layer which maximizes the loss for this branch of the neural
network.This leads to the feature extractor being trained with an adversarial objective to confuse the
domain classifier. When the domain classifier fails to discriminate between the domains, domain-
invariant features have been found and the classifier can then be successfully applied across the two
domains.

Domain classifier loss is calculated as:

Ld =
1

ns

∑
xs∈Ds

l(D(G(xs)), ds) +
1

nt

∑
xt∈Dt

l(D(G(xt)), dt), (4)

where l(D(G(xs)), ds) and l(D(G(xt)), dt) are the output probabilities for the source domain and
target domain labels respectively, calculated using cross-entropy loss. Finally, we designate this
domain classifier loss as our transfer loss: LTL = maxD{−Ld}.

3 Data

We use a similar data set as in [4], where authors extract galaxies at redshift z = 2 from Illustris-1.
Our dataset differs only by the addition of one more filter to get three channel images: ACS F814W,
NC F356W, WFC3 F160W. The source domain includes images from Illustris-1 convolved with a
model point-spread function (PSF), while the target domain additionally includes random sky shot
noise. More details about the data set can be found in [4]. The source and target domains contain
8120 merger and 7306 non-merger images (75× 75 pixels). We divide these data sets into training,
validation, and testing samples: 70% : 10% : 20%.

4 Experiments

We present the performance of both domain adaptation techniques in two neural network architectures:
the DeepMerge architecture introduced in [4] and the more complex ResNet18 [9]. Both networks
are trained for the task of distinguishing between two classes of objects: merging and non-merging
galaxies. We first train our two classifier networks without any domain adaptation on the pristine
labelled source data only. We then train with the addition of MMD and domain adversarial training.
Both deep domain adaptation techniques involve training with both the pristine labelled source data
and the unlabelled noisy target data. Finally, we evaluate all three training configurations on both the
source and target domain data.

In all experiments, we use the Adam optimizer [10] with implemented "one-cycle" scheduling, which
was shown to lead to much faster convergence of training accuracy [14]. We also include early
stopping, to prevent overfitting. Additionally, our choice of hyperparameters was informed from the
results of a hyperparameter search using DeepHyper [3, 2], with only one of the domain adaptation
techniques employed for each network. Furthermore, in all experiments we use the same fixed
random seed (1) to shuffle images and initialize network weights in order to ensure result consistency.
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5 Results

Resulting source and target classification accuracies of merging and non-merging galaxies for the
three experiments detailed above are given in Table 1. We designate our base for improvement as the
case without domain adaptation, where, as expected, test accuracy on source images is high, while
the classifier performs much worse on target domain images.

Table 1: Classification accuracies of DeepMerge and ResNet18 architectures, on source and target
domain test sets, without domain adaptation (first row) and when domain adaptation techniques are
used during training (all other rows).

Source Target
DeepMerge ResNet18 DeepMerge ResNet18

No Domain Adaptation 84.8% 81.1% 52.0% 60.5%
MMD 86.9% 90.4% 76.6% 73.8%
Adversarial 87.4% 92.3% 78.6% 71.6%

While we expected that with domain adaptation we would see a slight decrease in performance in the
source domain in order to compensate for the recognition of shared features across domains, what we
actually observe is an increase in performance for the source domain accuracy. We believe this is due
to the regularizing effect of the additional transfer loss included in MMD and adversarial training,
which assists in preventing overfitting on the source training data set which allows longer training
of the model. As expected, the target domain classification accuracy improves in both training with
MMD and adversarial training. Additional metrics for performance comparison on the source (dashed
bars) and target (solid bars) domain test set of images are presented in the top row of Figure 1. Here
training without domain adaptation is navy, MMD is violet, and adversarial training is orange. The
bottom row of Figure 1 shows the comparison of ROC curves (Receiver Operating Characteristics)
for source and target test set of images, both with and without domain adaptation, with the same color
and hatching scheme.

Furthermore, between the two networks, we posit that the smaller improvements made with ResNet18
in the target domain are the result of the much greater architecture complexity — two orders of
magnitude more trainable parameters than DeepMerge — making it more susceptible to overfitting
on the source domain. Early stopping patience and weight decay were invoked to tackle this issue,
but resulted in only marginal improvements. Since we found the methods to be extremely sensitive to
the hyperparameters chosen, we feel there is still room for further improvement with the choice of
optimal parameters (the hyperparameter search was not run on the task without domain adaptation)
and perhaps even network pruning.

While the results are quite sensitive to the choice of hyperparameters, we report that they are robust
to random seed choice. We ran 10 different random seeds for all experiments with DeepMerge,
and did not see significant deviation in performance outside of the target test set without domain
adaptation (which is expected since the classifier does not work). We report the following mean µ
and standard deviation σ for each experiment: no domain adaptation source (83.6± 0.7%) and target
(57.0 ± 5.2%); MMD source (86.6 ± 1.3%) and target (77.3 ± 0.6%); adversarial training source
(86.5± 0.9%) and target (78.9± 0.5%).

6 Conclusion

Astronomy is entering the big data era with a plethora of simulations and many ongoing and future
large surveys. Without the ability to connect the knowledge obtained from these different domains,
we are at a significant disadvantage to harness all available data. In this paper, we show the promise
for the use of domain adaptation techniques, like MMD and adversarial training, in astronomy to
substantially improve the performance of a source-trained model on a new and often unlabeled
target domain data set. While the scope of this paper is to demonstrate the efficacy of MMD and
adversarial training in the case with two simulated domains that differ only due to the inclusion of
observational noise, our future work will address results of these techniques applied to simulated and
real observational data.
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We acknowledge that, while domain adaptation techniques can be very powerful, their ultimate
performance depends on the similarity between the source and target domains. To ensure the best
possible performance across domains in astronomy— particularly when training with a simulated
source domain and real target domain, the simulated data must be made to mimic the target domain
and should contain only in-distribution objects for classification. Differences due to the limitations
of the simulator, or differences in the noise and other observational effects added to the simulated
images, can then be addressed by domain adaptation. It is for this reason that we firmly believe that
studying and refining domain adaptation techniques will prove crucial to successfully deploying deep
learning models in astronomy.

Figure 1: Top: Performance metrics, for no domain adaptation experiment (navy), MMD (violet) and
adversarial training (orange), on source (dashed bars) and target (solid bars) domain test set. Values
above bars are given as: target (source). We plot values for accuracy, precision, recall, F1 score, Brier
score and AUC, for both DeepMerge (left) and ResNet18 (right). Bottom: ROC curves (AUC values
in legend) for classification of source (dashed lines) and target domain (solid lines) test set of images
with same color and hatching scheme for both DeepMerge (left) and ResNet18 (right).
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Broader Impact

This research will impact the astronomy community but also the wider scientific community, since
domain transfer problems are very common in many areas of research. In experimental high-energy
physics, astronomy and cosmology, biotechnology, etc. research often involves studying physical
processes using simulations either before real data becomes available or in conjunction with it.
This paper demonstrates the capability of domain adaptation techniques as an important tool in this
process.
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