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Abstract

In quantum mechanics, a norm squared wave function can be interpreted as the
probability density that describes the likelihood of a particle to be measured in a
given position or momentum. This statistical property is at the core of the micro-
cosmos. Meanwhile, machine learning inverse design of materials raised intensive
attention, resulting in various intelligent systems for matter engineering. Here,
inspired by quantum theory, we propose a probabilistic deep learning paradigm
for the inverse design of functional meta-structures. Our probability-density-based
neural network (PDN) can accurately capture all plausible meta-structures to meet
the desired performances. Local maxima in probability density distribution corre-
spond to the most likely candidates. We verify this approach by designing multiple
meta-structures for each targeted transmission spectrum to enrich design choices.

1 Introduction

Discovering tailored materials from the starting point of a particular desired functionality, known
as inverse design, is a rapidly growing field benefitting from the powerful representation learning
of machine learning. As a machine learning application in physical sciences, automatic intelligent
design is speeding up the discovery of many new materials and refreshing scientists’ understanding.
For example, previous literatures have reported machine learning applications in discovering chemical
reactions, drugs, molecules, nanophotonics and metamaterials. Segler et al. [2018] Sanchez-Lengeling
and Aspuru-Guzik [2018] Schneider [2018] Before machine learning, materials were purposefully
designed by following physical guiding rules, which belongs to the paradigm of forward design. For
metamaterials with negative refractive indices, we tailored structures with locally resonant cells by
matching the frequencies of monopole and dipole resonances. Liu et al. [2000] To design specific
functional metasurfaces, we exploited local resonances to manually engineer phases of the reflected
or transmitted sound, which are generally slow and trial-and-error. Ma and Sheng [2016]

Machine learning with its powerful representation learning opens a door for automatic fast design.
Molesky et al. [2018] Previous literatures on meta-device design extensively applied machine learning,
for example, proposed tandem neural network (TNN) that pre-trains a forward network and then uses
the pre-trained module to post-train the final inverse network. Liu et al. [2018a] This technique can
ensure the convergence of loss, but it limits the choice of inverse designs by making a concession of
reducing the one-to-many relation into one-to-one. The choice of inverse designs is desirable in real-
world scenarios, as some predicted materials may not exist or be hard to be built. While a one-to-one
modeling representing the traditional inverse design methods may optimize to an inoperable material
structure in real practice, we are interested in enriching our design choices. In other interesting works,
deep generative models are leveraged to model the one-to-many function to solve that problem, but
their convergence is unstable. Ma et al. [2019] Liu et al. [2018b] Gulrajani et al. [2017]
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Above all, the motivation here is to propose an inverse design paradigm to efficiently approximate the
multivalued function that governs inverse design. Quantum mechanics reveals a world consisting
of pure statistics until observation occurs and the system decoherences. This property has inspired
previous literatures to study the quantum-inspired version of evolutionary algorithms Han and Kim
[2002], recommendation systems Tang [2019], language models Sordoni et al. [2013], information
retrieval models Zhang et al. [2018], and etc. Likewise, it is reasonable to model the quality-factor
probabilities of meta-structures as observed states represented by density matrix, where the quality
factor represents the likelihood of the designed structure to be the on-demand version. In this work,
we propose a quantum-inspired probabilistic density network (PDN) that leverages the quantum-like
interference to store the multivalued information in a mixed system. We demonstrate the effectiveness
of this approach by retrieving the best fitting meta-structures for a targeted sound transmission over a
wide frequency spectrum, with experiments unequivocally demonstrating the effectiveness.

2 Probabilistic Density Network

In quantum theory, Dirac’s notation is widely used to denote a unit vector as a ket |ψ〉 and its transpose
form bra 〈ψ|. The outer product of a state is denoted as |u〉 〈u|, representing the projector or the
density on the state. To represent the probability of a system, a density matrix is denoted as

ρ =
∑
i

pi |ψi〉 〈ψi| (1)

For a system of pure states, ρ is symmetric, positive semidefinite, and tr(ρ) = 1. The diagonal entries
give the probability of each state and the off-diagonal elements represent quantum coherences. The
joint distribution of multiple systems S1, S2, ..., Sn, representing the multiple design choices, can be
written as a joint density matrix ρS = ρS1

⊗ ρS2
⊗ ...⊗ ρSn

. To recover the marginal density matrix,
we can use the partial trace operation over the other particles to attain the state of the desired particle:

ρS1
= trS2,...,n

(ρS) =

n∑
j=1

S2,...,n
〈j|ρS |j〉S2,...,n

(2)

In the inverse design scheme, we can leverage this property of quantum computation to train a joint
distribution for multiple results and inference any single result via partial trace operation. Recall that
in classical scheme, we optimize the conditional probability for representing physical relation

L(θ|X,Y ) =

n∏
i=1

pmodel(yi|xi; θ) =
n∑
i=1

logpmodel(yi|xi) (3)

argmaxθ

n∑
i=1

log(1/(σ
√
2π)e−(yi−ŷi)2/(2σ2)) = argminθ

n∑
i=1

(yi − ŷi)2 (4)

In a regression task, maximizing likelihood function is equivalent to minimizing mean square error
loss, as shown in Eq (4), if the target yi obeys the Gaussian distribution N(ωTxi, σ

2). However, in
a multivalued regession, this assumption is no longer satisfied to accurately discover the physical
relation. Here, we can train a joint distribution and then obtain every single result by partial trace
operation to avoid the dilemma, as shown in Eq (2). Since optimizing high-dimensional diagnol
matrices in a classical computer can be computationally costly, here we present a classical probabilistic
model as an alternative implementation. The proposed framework has two modules that combines
neural model with probability sampling, as shown in Fig 1. In this hybrid architecture, the front end is
a neural network that maps a desired transmission spectrum to the parameters of individual Gaussian
distributions, other than giving the outputs directly. The rear end uses these parameters to construct a
mixed probability by linear superposition, and then sample the output with respect to the probability
of each superposed distribution for the meta-structure design. The amplitude of mixed probability
can be deciphered as the global wave function of plausible meta-structures. We can simulate the
density operator of a system by Gaussian distribution under the Central Limit Theorems

ρ = p(y|x, θ) =
m∑
i=1

πi(x)D(y, µi(x), σi(x)),

m∑
i=1

πi(x) = 1 (5)
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Figure 1: Architecture of the proposed probabilistic density network. The PDN input is the targeted
transmission spectrum, while the output is a mixed probability that provides a probabilistic decoher-
ence to derive a plausible meta-structure with similar transmission. Here the mixed probability is
superposed by individual probabilities in the output PDN layer, characterized by the parameters of
mixing coefficient, mean, and deviation. The local maximum in the mixture Gaussian is mapping to
an inversely designed structures with transmission spectra mostly close to the target one.

To implement this classical version model, an attention-only framework is recommended since it
allows adaptive input/output sizes and most materials or molecules have variable lengths or geometries.
Here, by adopting our framework, we allow various targets to obey various centralized distributions.

3 Experimental demonstration

To give a demonstration, we employ the proposed PDN to inversely design variable cross-section
meta-structures based on the target transmission spectrum in acoustics. To collect the labelled data, we
utilize a commercial finite element solver COMSOL Multiphysics 5.3TM that is linked to MATLAB
to consider the thermo-acoustic effect. Specifically, when the meta-structure has 5 cylindrical layers
with radius for each layer sampled from 8 values, we will end up with a number of training data
being 85, that is 32768, with the sampled radii at each layer to be either 1.8125 mm, 3.625 mm,
5.4375 mm, 7.25 mm, 9.0625 mm, 10.875mm, 12.6875mm, or 14.5mm. We use uniform sampling to
avoid bias in the solution space, but random sampling is also fine. In this work, the input of PDN
has 250 dimensions, corresponding to transmittances at frequencies from 20 Hz to 5000 Hz with an
interval of 20 Hz, while the output has only 5 dimensions of the radii of the five cylindrical layers in
meta-structures. We also randomly sampled 1000 test data from the continuous range of structural
parameters without overlap with training data. Here the reverse design of a 5-layer meta-structure is
a representative case for testing the model’s multivalued inverse design capability.

We explore with acoustic experiments to verify the effectiveness of PDN model. We firstly employed
the labelled dataset to train the PDN model and then fixed the weights for inference. In this example,
the target transmission spectrum is featured with a wide bandgap in the frequency range from 20 Hz
to 5000 Hz. With the target spectrum as the input, the PDN model outputted a mixed distribution,
as shown in Fig. 2(a). Here to visualize the result, we utilize the technique of principal component
analysis to reduce data dimensions from 5 to 2 (x and y). With the probability density, we can
evaluate the quality factor that characterizes the likelihood of the predicted meta-structure to fulfill
the input target in advance. Since the local maxima correspond to the most confident samples, we
chose to directly sample at the peaks in Fig. 2(a), as marked by the arrows. In Figs 2(b) and (c),
the predicted outputs at the locally highest confidence are located at A1, A2 and A3 in the reduced
2D space, mapping to (14.29, 12.31, 10.10, 1.89, 7.85) mm, (13.60, 7.13, 1.90, 11.38, 12.45) mm
and (11.23, 2.05, 6.95, 11.67, 13.66) mm in the full 5D space. As shown in Fig. 2(c), for the three
sampled structures, the predicted transmission spectra (blue solid line) are consistent with the target
one (red dashed line) and the experimentally measured one (solid spheres).
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Figure 2: Example of the PDN-based inverse design and experimental demonstration. (a) The output
mixture Gaussian for a target transmission spectrum, which is visualized in a 2D plot by reducing the
data dimensions from 5 to 2 via the principal component analysis. (b) Exact positions of the local
maxima visualized in the contour diagram, where each maximum is mapped to a meta-structure. The
local maxima and the corresponding meta-structures are labelled as A1, A2, and A3, respectively. (c)
The comparison among the target transmission spectra, the PDN predicted and the experimentally
measured ones for the three different meta-structures A1, A2, and A3 from the top down. Each
predicted A1, A2, and A3 has different radii per layer, but all get very similar desired transmissions
to the target ones. The radii of cylindrical air channels in the labelled structure and the predicted
structures are appended on the right-side for reference.

4 Conclusion

In summary, we have demonstrated a probability-density-based deep learning approach, i.e., PDN,
which can solve the multivalued inverse-design problems for implementing physically realizable
target functionalities in meta-structures with high accuracy. In acoustics, but not confined to this
field, we have successfully employed the PDN to evaluate all the plausible meta-structures for
different target transmission spectra. The output of PDN is a joint probability density, simulating the
quantum physics, for which the amplitude characterizes how closely the meta-structure fits the desired
functionalities. To verify the predictions from PDN, we design meta-structures corresponding to the
local maxima in probability density distributions for experimental demonstrations. The measured
transmission spectra agree well with both the target and the predicted ones from PDN. The proposed
PDN is scalable and unparalleled in the aspect of multivalued inverse-design, which paves the way
for fast design of novel devices with complex functionalities by optimizing the geometries.

5 Potential Impact and Future Vision

The stably multivalued inverse design is instructive in various subjects and applications, such as the
data-driven molecule design, material design, industrial process optimization, chemical reaction path
planning, equation solving with multiple solutions, and etc. In the area of metamaterials alone, we are
now using the paradigm to help guide the on-demand design of optical and acoustical devices with
various functionalities such as low-band adsorption, multi-path sound guiding, and etc. Currently,
the inverse design result of a machine learning system does not obey physical constrains, thus the
inverse design result is not foolproof yet. For example, the folding and sequence possibilities of a
protein structure are endless; some are unable to be tested or synthesized, or are unstable to exist
in nature. While the current machine learning systems cannot couple physics, enriching the design
choices via the multivalued paradigm can help avoid bad design. In the future, a machine learning
model incorporating physics constrain can be an alternative approach.
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