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Introduction
We formulate, as a deep reinforcement learning problem, the protein
folding problem of predicting a folded protein structure given an amino
acid sequence in the Hydrophobic-Polar (HP) model [2] .

Motivation
• The ability to predict the folded structures and the folding dynamics
given an amino acid sequence has a wide range of applications, such
as disease prevention and computational drug design.

• Creating a computer agent to predict protein structures and simulate
the folding process may be able to forgo the high degree of time, com-
putational expenses, and expertise needed to use crystallography and
NMR spectroscopy to identify the ground state structures and folding
pathways.

Challenges
• The protein folding problem in the HP model is NP-complete [1].

• Exponentially large state space of possible configurations of proteins.

Deep Reinforcement Learning Algorithms
We implement a few standard DRL algorithms such as Policy/Value It-
eration, DQN, and MCTS, as well as AlphaGo Zero with pretraining,
which is a combination of MCTS with deep neural networks to approx-
imate the policy and value function, to train a self-folding agent in a
”lattice” environment. We add the pretraining portion to speed up the
training process by pre-training the agent with MCTS without the neu-
ral network before transitioning to self-play using the neural network
to evaluate states found with MCTS.

Method Time / Sequence Length (2-D) Time / Sequence Length (3-D)
Policy Iteration 15 mins/14 37 mins/5

Value Iteration 15 mins/14 37 mins/5

DQN 30 mins/20 10 mins/15

Prioritized DQN 30 mins/20 10 mins/15

Dueling DQN 30 mins/20 10 mins/15

MCTS 5 mins/20 3 mins/12

AlphaGo Zero <1 min/40 –
+pretraining

Table 1: Max sequence length and inference time to fold comparisons

All the algorithms besides AlphaGo Zero with pretraining are trained
specifically for one sequence and times in Table 1 show the inference
plus training time. The AlphaGo Zero approach is trained on a set of se-
quences (so that it may generalize to unseen sequences); here inference
is fast but training slow.

Models
Lattice Environment – Build the protein up one amino acid residue
at a time, with each additional amino acid residue being placed on the
lattice adjacent to the last one placed.

Figure 1: Folding a sequence in the 2D and 3D lattice environments. A
green dot represents H, gray represents P, black lines represent covalent
bonds connecting adjacent residues in the sequence, and red dot lines
represent non-sequence-adjacent H-H bonds.

Chain Environment – Place the entire (unfolded) sequence onto the
lattice, and through a sequence of “pull” moves [3], fold the sequence
into a final folded structure.

Figure 2: Folding a sequence in the 2D chain environment. The circled
molecule represents position 1 of the sequence. Notice the Stop action;
with no predetermined game length as in the lattice environment, under
the chain environment, an agent must choose to stop moving.

Comparison
We compare our folding results with the results of traditional Monte
Carlo simulations using Gillespie’s acceptance rule, implemented in
the chain environment. In the table below, we take the best result out of
Policy/Value Iteration, DQN, and MCTS, and report it under DRL.

Length Benchmark Monte Carlo Sim. DRL AlphaGo Zero + pretraining
18 -4 -2 -2 -3

18 -8 -7 -6 -8

18 -9 -8 -7 -8

20 -9 -8 -6 -8

20 -10 -7 -8 -9

24 -9 -7 -6 -8

25 -8 -6 – -7

36 -14 -10 – -13

Table 2: 2D Free Energy Comparisons. A lower energy level means the al-
gorithm found a structure closer to the ground state. The benchmark data and
sequences are taken from http://www.brown.edu/Research/Istrail_
Lab/hp2dbenchmarks.html.

Conclusion and Future Work
In this study, we implemented different deep RL algorithms to solve
a challenging NP-Complete protein folding problem using the lattice
environment, and tested the validity of different neural network archi-
tectures and algorithms. Within our knowledge, ours is the first study
that implements DRL algorithms to the HP model in a 3-D lattice envi-
ronment. We also implemented the chain environment with pull moves
for simulating the dynamics of the protein folding process.
In future work, we plan to implement the DRL algorithms in the chain
environment to evaluate the merits of using a physically motivated ap-
proach compared to the simpler, more popular lattice environment.
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