
Learning Integrable Dynamics with Action-Angle
Networks

Ameya Daigavane∗
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

ameyad@mit.edu

Arthur Kosmala
Ludwig-Maximilians-Universität München

80333 Munich, Germany

a.kosmala@physik.uni-muenchen.de

Miles Cranmer
Princeton University

Princeton, NJ 08544, USA

mcranmer@princeton.edu

Tess Smidt
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

tsmidt@mit.edu

Shirley Ho
Centre for Computation Astrophysics, Flatiron Institute

New York, NY 10010, USA

shirleyho@flatironinstitute.org

Abstract

Machine learning has become increasingly popular for efficiently modelling the
dynamics of complex physical systems, demonstrating a capability to learn effec-
tive models for dynamics which ignore redundant degrees of freedom. Learned
simulators typically predict the evolution of the system in a step-by-step manner
with numerical integration techniques. However, such models often suffer from
instability over long roll-outs due to the accumulation of both estimation and inte-
gration error at each prediction step. Here, we propose an alternative construction
for learned physical simulators that are inspired by the concept of action-angle
coordinates from classical mechanics for describing integrable systems. We pro-
pose Action-Angle Networks, which learn a nonlinear transformation from input
coordinates to the action-angle space, where evolution of the system is linear.
Unlike traditional learned simulators, Action-Angle Networks do not employ any
higher-order numerical integration methods, making them extremely efficient at
modelling the dynamics of integrable physical systems.

1 Introduction

1.1 Modelling Hamiltonian Systems

Hamiltonian systems are an important class of physical systems whose dynamics are governed
by a scalar function H , called the Hamiltonian. The state of a Hamiltonian system is a 2-tuple
u(t) = (q(t), p(t)), where q ∈ Rn are the positions and p ∈ Rn are the canonical momenta. We
are interested in predicting the time evolution of a Hamiltonian system as a function of time t. In
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particular, we seek to learn a modelMϕ (parameterized by ϕ) that can accurately predict the future
state u(t+∆t) given the current state u(t):

Mϕ(u(t),∆t) ≈ u(t+∆t). (1)

Previous efforts towards modelling Hamiltonian systems [Greydanus et al., 2019, Cranmer et al.,
2020, Jin et al., 2020, Chen et al., 2018, Kidger, 2022] have seen success with neural networks trained
via backpropagation on the trajectory prediction objective:

ϕ∗ = argmin
ϕ

∑
t

∥Mϕ(u(t),∆t)− u(t+∆t))∥2.

Such models are often constrained in some way to match the underlying physical evolution, which
improves their accuracy. However, they suffer from several drawbacks that have restricted their
effectiveness: (1) Their predictions tend to be unstable over long roll-outs (when ∆t is large). (2)
They tend to require many parameters and need long training times. Further, the inference times of
these models often scale with ∆t.

Based on the principle of action-angle coordinates [Vogtmann et al., 1997] from classical mechanics,
we introduce a new paradigm for learning physical simulators which incorporate an inductive bias
for learning integrable dynamics. Our Action-Angle Network learns an invertible transformation
to action-angle coordinates to linearize the dynamics in this space. In this sense, the Action-Angle
Network can be seen as a physics-informed adaptation of DeepKoopman [Lusch et al., 2018]. The
Action-Angle Network is efficient both in parameter count and inference cost; it requires much
fewer parameters than previous methods to reach similar performance and enjoys an inference time
independent of ∆t.

1.2 Action-Angle Coordinates

The time evolution of any Hamiltonian system is given by Hamilton’s equations:
dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
(2)

where H is the Hamiltonian of the system. The complexity for learning these dynamics arises
solely because H is not known and must be inferred; only samples from a trajectory over which
H is conserved is available. The core issue for all physical simulators is the non-linearity of the
dynamics when expressed in the canonical coordinates (q, p). However, for integrable systems [Tong,
2004] which possess significant symmetry, the dynamics are actually linear in a set of coordinates
termed the action-angle coordinates [Vogtmann et al., 1997]. The actions I and angles θ are related
to the canonical coordinates (q, p) via a symplectic transformation T [Meyer and Hall, 2013] as
(I, θ) = T (q, p). In the action-angle coordinates, the Hamiltonian only depends on the actions I , not
the angles θ. Thus, Hamilton’s equations in this basis tell us that:

dI

dt
= −∂H

∂θ
= 0,

dθ

dt
=
∂H

∂I
. (3)

Thus, the actions I are always constant across a trajectory, while the angles evolve linearly with
constant rate θ̇ = ∂H

∂I . The action-angle space can be thought of as a torus Tn, where the actions I
are a function of the radii, and the angles describe the individual phases living in [0, 2π).

Learning the mapping T from canonical coordinates (q, p) to action-angle coordinates (I, θ) for
several physical systems was first explored in [Bondesan and Lamacraft, 2019], which did not
focus on the complete dynamics of integrable systems. We leverage their framework to additionally
incorporate a dynamics model F to learn a complete physical simulator.

Ishikawa et al. [2021] attempt to model the time evolution of actions for integrable systems by
learning the Hamiltonian in action-angle coordinates. However, their overall objective and training
setup are different from ours: they have samples of the true action-angle coordinates (I, θ) as input,
while we only observe the canonical coordinates (q, p).

2 Action-Angle Networks

Suppose we observe the system at time t, and we query our modelMϕ to predict the state at a future
time t+∆t. The Action-Angle Network performs the following operations, illustrated in Figure 1:
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Figure 1: An overview of the Action-Angle Network.

• Encode: Convert the current state in canonical coordinates q(t), p(t) to action-angle coordinates
I(t), θ(t) via a learned map T .

• Evolve: Compute the angular velocities θ̇(t) at this instant with the dynamics model F :
θ̇(t)← F(I(t)). Evolve the angles to time t+∆t with these angular velocities:

θ(t+∆t)← θ(t) + θ̇(t) ·∆t (mod 2π) (4)
• Decode: Convert the new state back to canonical coordinates q(t+∆t), p(t+∆t) via T −1.

Symplectic Normalizing Flows: The transformation T from canonical coordinates to action-angle
coordinates is guaranteed to be symplectic [Vogtmann et al., 1997]. To constrain our encoder to learn
only symplectic transformations, we compose layers of symplectic normalizing flows [Li et al., 2020,
Bondesan and Lamacraft, 2019, Jin et al., 2020]. In particular, we found that the G-SympNet layers
[Jin et al., 2020] with our modification described below performed well empirically. G-SympNet was
shown to be universal; they can represent any symplectic transformation given sufficient width and
depth. Similar to affine coupling layers [Dinh et al., 2014], each G-SympNet layer ψi operates on
only one of the coordinates keeping the other fixed, depending on the parity of i:

ψ2k(q, p) = (q, p+ f(q)), ψ2k+1(q, p) = (q + f(p), p) (5)

where f is of the following form f(x) = Cx+WT diag(A)σ(Wx+B) with learnable parameters
A ∈ Rdo , B ∈ Rdo , C ∈ R and W ∈ Rdo×n, where do is a hyperparameter. Our minor modification
above allows each layer to model the identity transformation, enabling the training of deeper models.

Action-Angles via Polar Coordinates: We found that learning a mapping from canonical coordinates
which live in R2n directly to action-angle coordinates which live in the torus Tn was challenging for
the network. We hypothesize that the differing topology of these spaces is a major obstacle because
of the resulting singularities. To bypass this, we borrow a trick from Bondesan and Lamacraft [2019];
we have the G-SympNet instead output the components of the actions (I(x), I(y)) in the Cartesian
coordinate basis. These are then converted to action-angles (I, θ) in the polar coordinate basis, by
the standard transformation Tpolar applied to each pair of (I(x)i , I

(y)
i ) coordinates:

Ii =

√
(I

(x)
i )2 + (I

(y)
i )2, θi = arctan(I

(y)
i /I

(x)
i ) (6)

Our encoder can thus be described as T := TPolar ◦ G-SympNet.

Evolve: From Equation 3, we know that the angular velocities θ̇ are only a function of the actions I
at the instant t0, which we model as a simple multi-layer perceptron (MLP) F . Since the angles θ
are guaranteed to evolve linearly, we do not need to use higher-order numerical integration schemes.
Instead, a single call to the forward Euler method is exact:

θ̇(t0)← F(I(t0)) θ(t0 +∆t)← θ(t0) + θ̇(t0) ·∆t (mod 2π) (7)

Decode: As T is symplectic, T is invertible. Thus, our decoder is T −1 := G-SympNet−1 ◦ T −1
polar.
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2.1 Training

We generate a trajectory Tr = {(q(t), p(t))}Tt=1 of T = 1000 time steps, by either evaluating the
closed-form dynamics equations or via numerical integration. In practise, this trajectory can also be
obtained from raw observations, and does not need to be regularly sampled in time. We train models
upto the first 500 time steps and evaluate performance on the last 500 time steps, for each trajectory.

State Prediction Error: We wish to learn parameters ϕ := (ϕT , ϕF ) that minimize the prediction
loss Lpredict:

Lpredict =
1

1+∆t

∑
t0∈Tr∥Mϕ(u(t0),∆t)− u(t0 +∆t)∥2. (8)

Regularization of Predicted Actions: Additionally, we wish to enforce the fact that the predicted
actions I are constant across the trajectory. We do this by adding a regularizer Laction on the variance
of the predicted actions:

Laction = V̂ar(I) = 1
T

∑
t0∈Tr

(
I(t0)− Ê[I]

)2

where Ê[I] = 1
T

∑
t0∈Tr I(t0). (9)

We find that this global regularizer works better than the loss proposed in Bondesan and Lamacraft
[2019] that minimizes only the local pairwise differences between the predicted actions across the tra-
jectory. As the Action-Angle Network is completely differentiable, the parameters ϕ can be obtained
via gradient-descent-based minimization of the total loss: ϕ∗ = argminϕ (Lpredict + λLaction) , where
λ is a hyperparameter that controls the strength of the regularization.

Schedule for ∆t: Increasing ∆t over the course of training helped, as it corresponded to gradually
increasing the complexity of the prediction task. We set ∆tmax = 10 and sampled ∆t according to:

∆t ∼ Uniform (0, (Current training step)/(Maximum training steps)) ·∆tmax (10)

3 Experiments

We compare the Action-Angle Network to three strong baseline models: the Euler Update Network
(EUN), the Neural Ordinary Differential Equations (Neural ODE) [Chen et al., 2018], and the physics-
inspired Hamiltonian Neural Networks (HNN) [Greydanus et al., 2019]. A comparison of these
models can be found in Table 1. The baseline models are further described in Section A.1.

Table 1: Comparing different models.

Action-Angle Network EUN Neural ODE HNN

Parameter count ≈ 8.5K ≈ 9K ≈ 100K ≈ 200K
Inference time O(1) O(1) O(∆t) O(∆t)

Learns conservation laws ✓ ✓
Learns linear dynamics ✓ ✓

As detailed in Section A.2, we simulate a system of coupled harmonic oscillators.2 Figure 2 depicts
the prediction error for each of the models as a function of training samples, showing that the
Action-Angle Network is much more data-efficient than the other baselines. Figure 3a shows that
the Action-Angle Network can be queried much faster than the Neural ODE and the HNN, with an
inference time that is independent of ∆t. Figure 3b depicts the prediction error as a function of ∆t,
showing that the Action-Angle Network also scales much better with the jump size ∆t, even for jump
sizes larger than those seen during training ∆tmax = 10. Finally, Figure 4 shows that the predicted
angular frequencies from the Action-Angle Network closely match the true angular frequencies.

4 Conclusion

Our preliminary experiments indicate that Action-Angle Networks can be a promising alternative
for learning efficient physical simulators. Action-Angle Networks overcome many of the obstacles
– instability and inefficiency – faced by state-of-the-art learned simulators today. That being said,
our experiments here only model very simple integrable systems. Next, we plan to analyse the
performance of Action-Angle Networks on modelling large-scale non-integrable systems (such as
cosmological simulations and molecular dynamics trajectories) to better understand their tradeoffs.

2We have created animations of the system trajectory and model predictions at this webpage. Our codebase
to run all experiments and analyses is available at https://github.com/ameya98/ActionAngleNetworks.
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(a) Action-Angle Network
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(b) Euler Update Network
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(c) Neural ODE
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(d) Hamiltonian Neural Network

Figure 2: Prediction errors on test data as a function of training samples.
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(a) Inference times as a function of jump ∆t.
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(b) Prediction error as a function of jump ∆t.

Figure 3: Evaluating each model on (a) inference time and (b) prediction error.
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Figure 4: Kernel density plot of angular frequencies predicted by the Action-Angle Network. True
angular frequencies are indicated by dashed vertical lines.
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Broader Impact Statement

In this paper, we have proposed a novel method for modelling the dynamics of Hamiltonian systems,
with improvements in computational efficiency. There has been much interest in accelerating
simulations of various kinds across scientific domains that could have impact on human lives (for
example, simulating biological cell cycles and immune system responses). However, given the
techniques here apply to highly-constrained physical systems, we do not anticipate any negative
social implications of our work.
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A Appendix

A.1 Baseline Models

Euler Update Network: This model updates the latent state via the forward Euler method:

û(t)← Encode(u(t))
û(t+∆t)← û(t) + ∆t · F(û(t))
u(t+∆t)← Decode(û(t+∆t))

Neural Ordinary Differential Equations: A generalization of Euler Update Networks, Neural
ODEs [Chen et al., 2018] have demonstrated state-of-the-art performance on several time-series
forecasting problems. They usually use a higher-order numerical integration scheme to update the
latent state:

û(t)← Encode(u(t))

û(t+∆t)← û(t) +

∫ t+∆t

t

F(û(s))ds

u(t+∆t)← Decode(û(t+∆t))

Hamiltonian Neural Network: Hamiltonian Neural Networks (HNNs) [Greydanus et al., 2019]
models the Hamiltonian in a latent space explicitly and updates the latent coordinates via Hamilton’s
equations.

q̂(t), p̂(t)← Encode(u(t))

q̂(t+∆t)← q̂(t) +

∫ t+∆t

t

∂

∂p̂
H(q̂(s), p̂(s))ds

p̂(t+∆t)← p̂(t)−
∫ t+∆t

t

∂

∂q̂
H(q̂(s), p̂(s))ds

u(t+∆t)← Decode(q̂(t+∆t), p̂(t+∆t))

Wherever applicable, we used the Dormand-Prince 5(4) solver, a 5th order Runge-Kutta method for
numerical integration.

All of these baselines can technically simulate the Action-Angle Network by encoding the canonical
coordinates into the action-angle coordinates to linearize the dynamics.

A.2 Harmonic Oscillators

We model a system of n point masses, which are connected to a wall via springs of constant kw and
to each other via springs of constant kp. This can be described by the set of n differential equations:

m
d2qi
dt2

= −kwqi +
∑
j ̸=i

kp(qj − qi). (11)

where qi(t) is the position of the ith point mass. This forms a system of coupled harmonic oscillators,
where kp controls the strength of the coupling. Any solution to Equation 11 is a linear combination
of the ‘normal modes’ of the system [Morin, 2022]:

q(t) =
∑n

r=1Arcr cos (ωrt+ ϕr).

The n angular frequencies ω and coefficients c are found by solving the following eigenvalue-
eigenvector equation (M + ω2In)c = 0, where M is the matrix defined as:

Mij =


−kw + (n− 1)kp

mi
if i = j

kp
mi

if i ̸= j
(12)
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